
WHAT YOU SEE IS ALL THERE IS∗

BENJAMIN ENKE

News reports and communication are inherently constrained by space, time,
and attention. As a result, news sources often condition the decision of whether
to share a piece of information on the similarity between the signal and the prior
belief of the audience, which generates a sample selection problem. This article
experimentally studies how people form beliefs in these contexts, in particular the
mechanisms behind errors in statistical reasoning. I document that a substantial
fraction of experimental participants follows a simple “what you see is all there is”
heuristic, according to which participants exclusively consider information that is
right in front of them, and directly use the sample mean to estimate the popula-
tion mean. A series of treatments aimed at identifying mechanisms suggests that
for many participants, unobserved signals do not even come to mind. I provide
causal evidence that the frequency of such incorrect mental models is a function
of the computational complexity of the decision problem. These results point to
the context dependence of what comes to mind and the resulting errors in belief
updating. JEL Codes: D03; D80; D84.

I. INTRODUCTION

News reports and communication are both inherently con-
strained by space, time, and attention. As a result, news sources
often condition the decision of whether to share a piece of infor-
mation on the similarity between the signal and the prior belief
of the audience. In some cases, news reports and communication
disproportionately focus on events that are likely to move the audi-
ence’s priors, such as the occurrence of terror attacks, large move-
ments in stock prices, or surprising research findings. Although
these types of events are routinely covered, the corresponding
nonevents are not: one rarely reads headlines such as “No ter-
ror attack in Afghanistan today.” In other cases, news providers
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supply news that align with people’s priors but omit those that
do not. For example, social networks like Facebook exclude sto-
ries from newsfeeds that go against users’ previously articulated
views. Regardless of the specific direction of the sample selection
problem, these contexts share the feature that whether a spe-
cific signal gets transmitted depends on how this signal compares
to the audience’s prior. In the presence of such selection prob-
lems, people need to draw inferences from (colloquially speaking)
“unobserved” signals.

While an active theoretical literature has linked selection
problems in belief updating to various economic applications,1

empirical work on people’s reasoning in such contexts is more
limited. Moreover, if people actually fail to take into account un-
observed information, a perhaps even more fundamental question
concerns the mechanisms behind such a bias. As reflected by a re-
cent comprehensive survey paper on errors in statistical reasoning
(Benjamin 2019), researchers have accumulated a broad set of
reduced-form judgmental biases. Despite early calls for empirical
work on the microfoundations of biases (Fudenberg 2006), rela-
tively little is known about the mechanisms that underlie judg-
ment errors. In the present context, a promising candidate mech-
anism is the idea that agents maintain an incorrect mental model
of the environment because selection does not even come to mind
when a decision is taken: people may never even ask themselves
what it is that is not directly in front of them.

This articles tackles these two sets of issues—how people pro-
cess selected information and the role of mental models therein—
by developing a tightly structured individual decision-making ex-
periment that operationalizes the selection problems discussed
already. In the experiment, the entire information-generating pro-
cess is computerized and known to participants. Subjects estimate
an unknown state of the world and are paid for accuracy. The
true state is generated as an average of six i.i.d. random draws
from the simple discretized uniform distribution {50, 70, 90, 110,
130, 150}. I refer to these random draws as signals. Participants
observe one of these six signals at random and subsequently in-
dicate whether they believe the true state to be above or below
100. Thereafter, participants observe additional signals by inter-
acting with a computerized information source. Just like in the

1. See Levy and Razin (2017), Han and Hirshleifer (2015), Jehiel (2018), and
Jackson (2019).
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WHAT YOU SEE IS ALL THERE IS 1365

motivating examples, this information source transparently con-
ditions its behavior on the participant’s first stated belief. On a
participant’s computer screen, the information source shares all
signals that “align” with the participant’s first stated belief (e.g.,
are smaller than 100 if the first belief is below 100) but not all
signals that “contradict” the first belief (e.g., are larger than 100
if the first belief is below 100). Afterward, participants guess the
state.

Bayesian inference would require participants to draw an
inference about signals that do not appear on their computer
screens, just like readers should infer something from the fact
that a news outlet does not report on the stock market on a given
day. In what follows, I colloquially say that participants “do not
see” these latter signals, even though in an information-theoretic
sense, this constitutes coarse information.

In a between-subjects design, I compare beliefs in this Se-
lected treatment with those in a Control condition in which sub-
jects receive the same objective information as those in Selected
except that all signals physically appear on subjects’ screens. Com-
paring beliefs across the two treatments allows me to causally
identify participants’ tendency to neglect selection problems in
processing information, holding fixed the objective informational
content of the signals.

The results document that beliefs exhibit large and statisti-
cally significant differences across the two treatments. Whenever
participants’ first signal is above 100, their final stated beliefs
tend to be upward biased and conversely for initial signals below
100. I show that this pattern is robust against the provision of
some feedback.

To disaggregate these cross-treatment differences, I analyze
individual decision rules. Participants’ responses are often heuris-
tic in nature and reflect significant rounding to multiples of 5 or
10. Although individual decisions are noisy, these heuristics ap-
pear to have a systematic component. To identify this systematic
part, the analysis estimates an individual-level parameter that
pins down updating rules in relation to Bayesian rationality. Here,
the distribution of updating types follows a bimodal structure: the
modal responses of 60% of all participants are either Bayesian or
reflect full neglect. In fact, even 87% of those participants that
exhibit stable identifiable decision types can be characterized as
exactly rational or exactly full neglect. Thus, a significant fraction
of participants states beliefs whose stable component corresponds
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to fully ignoring what they do not see and averaging the visible
data.

Economists are increasingly interested in the mechanisms
behind reduced-form errors in statistical reasoning, probably be-
cause of the view that this may help develop appropriate debiasing
strategies or inform theoretical work. In the present context, the
patterns are prima facie consistent with two alternative accounts
of the data. A first is that—as posited in much recent theoret-
ical work discussed below—neglect reflects an incorrect mental
model of the data-generating process that arises because certain
aspects of the problem do not even come to mind. Here, people
may never even ask themselves which signals they do not see and
why. Relatedly, a recent literature in cognitive psychology on the
metaphor of the “naive intuitive statistician” argues that people
are reasonably skilled statisticians but often naively assume that
their information samples are unbiased and that sample proper-
ties can be directly used to estimate population analogs (Fiedler
and Juslin 2006; Juslin, Winman, and Hansson 2007). Accord-
ing to this “incorrect mental models” perspective, the probability
that selection comes to mind may be a function of the computa-
tional complexity of the decision problem. This is because deci-
sion makers need to allocate scarce cognitive resources between
(i) setting up a mental model and (ii) computational implementa-
tion. Thus, a perspective of incorrect mental models suggests that
people should be less likely to develop a correct mental model if
they are cognitively busier with (or distracted by) computationally
implementing a given solution strategy.

A plausible second view of the mechanisms behind neglect is
that people are aware of the unobserved signals but struggle with
the conceptual or computational difficulty of correcting for selec-
tion. To investigate the relative importance of these two accounts,
I implement three sets of follow-up treatments. Each treatment
variation predicts a change in behavior under only one of the two
accounts.

First, I design a treatment in which the presence of a se-
lection problem is eliminated, but subjects still need to process
unobserved signals. If neglect was largely driven by the concep-
tual or computational difficulty of correcting for selection, then
neglect should disappear in this treatment. Operationally, sub-
jects observe four randomly selected signals, while four addi-
tional signals are not directly communicated to them. As in the
baseline condition, participants do have information about the
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WHAT YOU SEE IS ALL THERE IS 1367

unobserved signals, which in this case is their unconditional ex-
pectation. Nonetheless, a considerable fraction of subjects again
follows a “what you see is all there is” heuristic of averaging the
visible data. This shows that people struggle not (only) with con-
ceptually thinking through a potential selection problem. Instead,
they appear to have a more general tendency to estimate popula-
tion means through sample means, where the “sample” is given
by what is right in front of them and hence top of mind. As I dis-
cuss in Section VI, the averaging of observed data appears to tie
together several recent findings in the experimental literature,
including work in psychology on the “naive intuitive statistician.”

As a second test between the two alternative mechanisms
behind neglect, I devise treatments that hold the conceptual diffi-
culty of accounting for selection constant but vary the cognitive re-
sources that participants have at their disposal to set up a correct
mental model. To this effect, I vary the computational complexity
of computing beliefs in such a way that it plausibly affects only
the probability that the unobserved signals come to mind. The
experiments operationalize complexity in two different ways: the
complexity of the signal space and the number of signals. First, to
vary the complexity of the signal space, I implement treatments
Complex and Simple. In Simple, the signal space is given by {70,
70, 70, 70, 70, 70, 130, 130, 130, 130, 130, 130}. In Complex, it
is {70, 70, 70, 70, 70, 70, 104, 114, 128, 136, 148, 150}. In both
treatments, whenever a participant states a first belief above 100,
the selection problem can be overcome by remembering that an
unobserved signal must be a 70. Thus, these treatments leave the
conceptual and computational difficulty of accounting for selec-
tion constant (if the first belief is above 100). At the same time,
these treatments vary the computational difficulty of computing
a posterior belief and problem-induced cognitive load. Second, to
manipulate the number of signals, participants in condition Few
were confronted with the same signal space as those in Com-
plex, but the true state was generated as the average of only two,
(rather than six) random draws. Because all of these treatments
fix the difficulty of backing out an unobserved signal, complexity
can only matter to the extent that it induces cognitive load and
reduces the probability that the unobserved signals come to mind.

The results show that increases in complexity (in terms of
the number of signals and the complexity of the signal space) lead
to substantially more neglect than in the respective comparison
treatments. This is even though participants in the more complex
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treatments work longer on the problems. The fact that variations
in complexity matter for neglect even though the difficulty of ac-
counting for selection is unchanged again highlights the role of
(endogenous) incorrect mental models.

As a third test between the alternative mechanisms, I im-
plement an experimental condition that includes a simple nudge
on participants’ decision screen to pay attention to, or remember,
those signals that they “do not see.” This intervention decreases
neglect by about 50%, which again suggests that the unobserved
signals otherwise did not come to subjects’ minds in the first place.

In summary, the takeaways from the analysis of mechanisms
are twofold. First, incorrect mental models play an important role
in generating neglect. Unobserved signals do not seem to come to
mind in the first place, which leads people to directly use the sam-
ple mean to estimate the population mean. Second, what comes to
mind and the resulting mental models are not exogenously given
“neglect parameters”—instead, they are context-dependent and
endogenous to the computational complexity of the environment.
These insights are potentially relevant not only for modeling up-
dating errors but also for policy in terms of what will be an effec-
tive method to correct biased beliefs.

The article proceeds as follows. Section II describes the ex-
perimental design. Sections III–V present the results and study
mechanisms. Section VI discusses related literature and offers
concluding thoughts.

II. EXPERIMENTAL DESIGN

II.A. Setup

The experiment was designed to achieve the following objec-
tives: (i) full control over the data-generating process, (ii) exoge-
nous manipulation of the degree of selection, (iii) a control con-
dition that serves as a benchmark for updating without selected
information, and (iv) incentive-compatible belief elicitation. Most
importantly, a clean identification requires subjects’ full knowl-
edge of the data-generating process.

The main idea behind the design is to construct two sets of
signals (two treatments) that result in the same Bayesian pos-
terior, but only one information structure features a problem of
selection. Subjects were asked to estimate an ex ante unknown
state of the world θ and were paid for accuracy. The computer
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WHAT YOU SEE IS ALL THERE IS 1369

TABLE I
OVERVIEW OF THE EXPERIMENTAL DESIGN

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Computer
determines
state by
drawing six
signals

Subject
receives one
signal

First binary
guess b1 based
on signal

Subject
observes
messages of
information
source

Continuous
guess b2

generated θ by drawing six times, with replacement, from the set
X = {50, 70, 90, 110, 130, 150}. Draws from X are uniform. The av-
erage of these six draws then constituted the true state θ , which
in the experiment is referred to as the “variable” that subjects
needed to estimate. Henceforth, I refer to the random draws as
signals.

In the course of the experiment, a subject interacted with a
computerized information source that showed the subject (subsets
of) the signals. An experimental task consisted of multiple stages,
as summarized in Table I. First, after the computer generated the
true state, a subject observed one randomly selected signal. Sec-
ond, based on this first signal, subjects provided an incentivized
guess b1 about whether they believed θ to be smaller or larger
than 100, b1 ∈ {low, high}.2

Third, the information source showed the subject additional
signals. This is the only stage in which treatments Selected and
Control differed, as detailed below. Finally, after subjects observed
the messages of the information source, they stated an incen-
tivized belief about the state b2 ∈ [50, 150], with at most two
decimals.

In Selected, the information source faced a budget constraint
and hence conditioned its decision of which out of the remain-
ing five signals to show the subject on the subject’s first guess.
Specifically, if the subject’s first guess was higher than 100, the
information source showed the subject all signals above 100, but
at least three signals. Likewise, if the subject’s first guess was
smaller than 100, the information source showed the subject all
signals below 100, but at least three signals. For example, if a par-
ticipant’s first guess was above 100 and only two of the remain-
ing five signals were above 100, the information source showed

2. If the true state equaled 100, subjects received the full payment for either
guess.
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the subject these two signals and one randomly selected signal
of those below 100. If four signals were above 100, the subject
would be shown (only) these four. In what follows, I refer to the
signals that the information source did not share with subjects as
“unobserved” or as signals that subjects “do not see.” This termi-
nology is purely colloquial in nature and meant to make it salient
that these signals do not appear on subjects’ decision screens. In
an information-theoretic sense, these “unobserved” signals consti-
tute coarse information.

In summary, subjects in Selected faced a selection problem
akin to the examples discussed in the introduction in that the in-
formation source conditions its messages (whether to send a sig-
nal) on the subject’s prior. Given the simplified discretized uniform
distribution over the signal space, it was rather straightforward
for subjects to infer which types of signals were unobserved. Being
sophisticated about selection requires subjects to understand that
when they first guessed b1 = high, an unobserved signal was 70,
in expectation, while it was 130 when they first guessed b1 = low.

Treatment Control was designed to deliver the same Bayesian
posterior as Selected without the presence of a selection problem.
In the Control condition, participants observed two types of sig-
nals on their decision screens. First, they observed those signals
that subjects in the Selected treatment also observed. Second, they
were also shown a coarse version of the signals that subjects in the
Selected condition did not observe. Specifically, if an unobserved
signal was in {50, 70, 90}, the information source communicated
70 to the subject, while if the unobserved signal was in {110, 130,
150}, the information source communicated 130.3 These coarse
messages equal the expected signal conditional on a subject’s first
guess in Selected. Thus, the informational content of the Selected
and the Control treatments is identical.

Participants solved eight tasks with independent signal
draws. To keep the experimental setup close to the motivating
examples in which people need to process information about multi-
ple variables of interest, the baseline experimental setup was such
that subjects completed two tasks at the same time (on the same
decision screen). In the instructions and in the computer program,
this was referred to as estimating “variable A” and “variable B,”

3. On their computer screens, there was no way for subjects to tell apart a
“realized” 70 and an “expected” 70. I made this design choice because telling them
apart is redundant for rational inference.
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WHAT YOU SEE IS ALL THERE IS 1371

respectively. Accordingly, subjects observed a first signal for each
variable, then provided a first guess for each variable, and were
then shown the subsequent messages of the information source,
again for both variables. To avoid confusion, both the experimental
instructions and the computer program specified which variable a
signal belongs to by adding a capital letter. For example, subjects’
first signals in the first period (the first two tasks) would be given
by A − 130 and B − 150. This procedure was the same in Con-
trol and Selected. In total, subjects completed four periods (eight
tasks), summarized in Table II. All subjects were exposed to the
same sets of signal realizations. Below, I discuss a treatment that
verifies that very similar results hold if subjects complete these
eight tasks strictly sequentially.

The intrinsic interest of this study is in subjects’ second
guesses; the first guess only serves the purpose of imposing a
selection problem akin to the examples described in the intro-
duction. Thus, to reduce noise, the instructions mentioned that
subjects’ earnings from the first guess would be maximized in ex-
pectation if they followed the first signal, that is, stated a guess
above (below) 100 if the signal was above (below) 100.

Control questions verified that subjects understood the pro-
cess generating the data. For example, subjects were asked, “As-
sume that you issued a first guess of larger than 100. Which draws
will the information source show you no matter what? (a) None.
(b) Those above 100. (c) Those below 100.” Only once subjects
had correctly solved all control questions could they proceed to
the experiment.4 Online Appendix H contains the experimental
instructions and control questions.

II.B. Theoretical Considerations

This subsection develops a simple, mechanical formal frame-
work to fix ideas about the experimental design above. I use this
framework below for model-based empirical analyses. The true
state of the world is given by θ = ∑6

k=1
sk
6 . Let Z(b1) denote the set

4. The control questions followed a multiple-choice format with three to four
questions per screen. Thus, trial-and-error was very cumbersome. Moreover, the
BonnEconLab has a control room in which the experimenter can monitor the
decision screens of all experimental subjects. Thus, whenever a subject appeared
to have problems in answering the control questions, an experimenter approached
the subject, clarified open questions (if any), and excluded the subject from the
experiment if they did not appear to understand the instructions.
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WHAT YOU SEE IS ALL THERE IS 1373

of signals a subject actually sees on their computer screen, which
depends on b1. Denote N = |Z|. Given a set of signals, a Bayesian
would compute the mean posterior belief bB as

(1) bB =
[∑N

k=1 sk∈Z(b1)

]
+ (6 − N) · E[sk�∈Z(b1) | b1]

6
,

where sk ∈ Z(b1) denotes a signal that appears on the decision
screen. The second term in the numerator corresponds to the in-
ference of a Bayesian of those signals that are not shown, which
is the expectation conditional on the first belief.

I introduce theoretical benchmarks for neglect. A first pos-
sibility is that the agent applies a heuristic of “what you see is
all there is” and does not draw any inferences from unobserved
signals but just averages the observed data:

(2) bN,1 =
∑N

k=1 sk∈Z(b1)

N
.

Comparing this benchmark with equation (1), we see that aver-
aging the visible data generates two potential sources of error.
First, the sample may be biased: because only sk ∈ Z(b1) appear
in the numerator, b1 determines whether predominantly high or
low signals are taken into account. This is the traditional sample
selection problem.

A second source of error arises because even if Z did not de-
pend on b1 (if there were no systematic sample selection), equa-
tion (2) would still ignore the unobserved signals. This is impor-
tant because even if Z was determined at random, the decision
maker has prior knowledge about the unobserved signals that he
can make use of, which is that E[sk] = 100.

A plausible alternative specification of a neglect benchmark
eliminates the second type of error by positing that participants
are aware of the signals they do not see but fail to understand the
sample selection problem created in the process. Such a decision
maker imputes the unconditional expectation of E[sk] = 100 for
any unobserved signal. The second neglect benchmark is given by

(3) bN,2 =
[∑6

k=1 sk∈Z(b1)

]
+ (6 − N)E[sk�∈Z(b1)]

6
.
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It is perhaps helpful to provide an interpretation of the psy-
chological difference between the two neglect benchmarks in equa-
tions (2) and (3). The agent in equation (3) only struggles with un-
derstanding (or computing) conditional expectations. The agent
in equation (2) ignores the unobserved signals altogether, plau-
sibly because he never actively thinks about how many signals
there are. Because the unobserved signals are not top of mind,
he naively uses the (visible) sample mean to estimate the popula-
tion mean. Indeed, a long literature in cognitive psychology on the
metaphor of a “naive intuitive statistician” posits that people have
a tendency to directly use sample moments to estimate population
analogs (Fiedler and Juslin 2006; Juslin, Winman, and Hansson
2007).

The main experiments were not designed to distinguish be-
tween these two neglect benchmarks. The correlation between
bN, 1 and bN, 2 in my experimental tasks is ρ = 0.99, and they make
quantitatively very similar predictions. However, in follow-up ex-
periments (discussed in Section IV), I use the distinction between
the two benchmarks to tease out the mechanisms behind neglect.
The results show that a large majority of those subjects that are
not Bayesian appear to follow the first neglect benchmark. Hence
I use bN, 1 in what follows.5

Let χ ∈ [0, 1] parameterize the degree of neglect such that
χ = 1 implies full neglect. Then a decision maker’s belief b can
be expressed as a weighted average of bB and bN, 1 plus decision
noise ε:

b = (1 − χ )bB + χbN,1 + ε

= bB + χ
6 − N

6
(
s̄k∈Z(b1) − E[sk�∈Z(b1)|b1]

)
︸ ︷︷ ︸

≡d

+ε(4)

= bB + χd + ε,(5)

where s̄k∈Z(b1) is the average visible signal and ε is a mean 0 ran-
dom computational error. The systematic component of a subject’s
belief b can be expressed as Bayesian belief plus a distortion term

5. Table 3 in Online Appendix B and Figure 6 in Online Appendix C reproduce
the main results using the bN,2 benchmark. The results are almost identical to
those presented below.
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TABLE III
TREATMENT OVERVIEW

Treatment # of subjects Ave. earnings (euros)

Selected 74 12.77
Control 38 17.83
Sequential 75 11.28
Feedback 75 15.08
Random 75 12.10
Complex 75 14.28
Simple 75 14.47
Few 75 17.43
Nudge 72 12.18
Selected Replication 75 12.48

Notes: Horizontal lines indicate which treatments were randomized within the same experimental sessions.
Payments included a show-up fee of €10 in Feedback and of €6 in all other treatments.

d times the neglect parameter χ . I use this formal framework to
compute estimates of neglect χ̂ and decision noise |ε̂|.

II.C. Procedural Details

Apart from the treatments described above, I implemented
eight additional treatments that will be discussed below. Table III
provides an overview of all treatments; horizontal lines indicate
which treatments were randomized within experimental sessions.

The experiments were conducted at the BonnEconLab of the
University of Bonn and computerized using z-Tree (Fischbacher
2007). Participants were recruited using hroot (Bock, Baetge, and
Nicklisch 2014). After the written instructions were distributed,
subjects had 10 minutes to familiarize themselves with the task.
Each period consisted of two computer screens. On the first screen,
subjects were informed of the first signal and issued a binary
guess. On the second screen, participants received the messages
from the information source and stated a point belief. Sessions
lasted 50 minutes on average.

All decisions were financially incentivized, in expectation:
in total, subjects took 16 decisions, 1 of which was randomly
selected for payment. This constitutes an incentive-compatible
mechanism in such a setup (Azrieli, Chambers, and Healy 2018).
The probability that a second (point) belief was randomly selected
for payment was 90%, and one of the binary first guesses was
chosen with probability 10%. The binary first guess was incen-
tivized such that subjects received €18 if the guess was correct and
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nothing otherwise. The continuous point beliefs were incentivized
using a quadratic scoring rule with maximum variable earnings
of €18, that is, variable earnings of subject i in task j equaled
π

j
i = max{0; 18 − 0.2 × (bj

i − θ j)2}.

III. RESULTS

III.A. Baseline Results

1. Preliminaries. The object of interest in the analysis is a
potential treatment difference in the second beliefs that subjects
state. For completeness, across the two treatments, 93% of all first
binary guesses follow the first signal and enter a high (low) first
guess if the first signal is above (below) 100. Online Appendix A
presents a set of robustness checks that restrict the analysis to
observations that followed the first signal.

2. Beliefs across Tasks. Table IV presents an overview of the
results in each of the eight tasks. For ease of comparison, I provide
the benchmarks of full neglect and Bayesian beliefs, respectively.
Reassuringly, beliefs in the Control condition follow the Bayesian
prediction very closely, suggesting that the experimental setup
was not systematically misconstrued by subjects: in the absence of
selected information, people state rational beliefs. In the Selected
treatment, however, beliefs are distorted away from the Bayesian
benchmark toward the full neglect belief. In all eight tasks, beliefs
significantly differ between treatments at least at the 10% level,
and usually at the 1% level (Wilcoxon ranksum tests).

3. Econometric Analysis. In the remainder of the article,
treatment comparisons will be conducted by pooling the data
across tasks for brevity and to eliminate potential multiple-testing
concerns. Pooling the data requires transforming the beliefs data
into a scale that has the same meaning across tasks. For this pur-
pose, I make use of the simple belief formation rule introduced in
Section II.B, which has the additional advantage that going for-
ward, all estimated quantities will have direct theoretical coun-
terparts. I use equation (5) to estimate the neglect implied in the
belief of subject i in task j:
(6)

χ̂
j

i = E[χ j
i |bj

i ] = bj
i − bj

B

dj = 6(bj
i − bj

B)

(6 − N j)
(
s̄ j

k∈Z(b1) − E[s j
k�∈Z(b1)|bj

i,1]
) .
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Note that this analytical tool corresponds to a simple linear trans-
formation of the raw beliefs data (subtract the Bayesian belief
and divide by the distortion term d, which is only a function of
the signal realizations). This method only converts the data into
a consistent interval, so that subjects’ beliefs (i) are on the same
scale across tasks and (ii) can be directly interpreted as reflecting
Bayesian (χ̂ = 0), full neglect (χ̂ = 1), or intermediate levels.

Although χ̂
j

i should in principle be between 0 and 1, in the
experimental data naturally not all observations lie within this
interval, likely at least partly due to typing mistakes and ran-
dom computational errors. This produces outliers that are partly
severe. Across the treatments in Table III (N = 5,416 belief state-
ments), the minimum implied χ̂

j
i is −21 and the maximum 12.7.

To avoid arbitrary exclusion criteria while dealing with outliers,
throughout the article I present three different sets of regres-
sion specifications. First, I present an analysis with median re-
gressions that includes the full sample of beliefs, including large
outliers. Second, I perform an OLS analysis in which I winsorize
the data at |χ̂ j

i | = 3. That is, I replace each belief that is larger
(smaller) than 3 (−3) by the corresponding value. This affects 3%
of all observations. Third, I present an OLS analysis on a trimmed
sample, where I drop all observations with |χ̂ j

i | > 3. For complete-
ness, Online Appendix A presents an additional set of specifica-
tions in which I implement OLS regressions on the full sample,
including all outliers. The results are similar to those reported in
the main text.

Table V presents the results. In these analyses, the unit of
observation is a subject-task, for a total of usually eight observa-
tions per subject.6 The standard errors are clustered at the subject
level. All regressions include experimental session fixed effects,
leveraging random assignment into treatments within sessions.

The results confirm a large and statistically significant ag-
gregate treatment difference between Control and Selected. In
column (1), the median regression only controls for session fixed
effects. Column (2) adds a vector of controls: fixed effects for each
experimental task interacted with the first guess (high / low) of
the subject, as well as controls for individual characteristics. In
columns (3) and (4), the dependent variable is winsorized at |3|,
and I estimate OLS regressions. In columns (5) and (6), the sample

6. In a few cases, subjects did not enter a belief on time, so these observations
are missing.
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TABLE V
BASELINE RESULTS: TREATMENTS SELECTED AND CONTROL

Dependent variable:
Neglect χ̂

j
i

Median regression OLS winsorized OLS trimmed

(1) (2) (3) (4) (5) (6)

0 if Control, 1 if 0.40∗∗∗ 0.50∗∗∗ 0.54∗∗∗ 0.60∗∗∗ 0.51∗∗∗ 0.54∗∗∗
Selected (0.08) (0.10) (0.09) (0.09) (0.09) (0.09)

Session FE Yes Yes Yes Yes Yes Yes
Task FE × prior No Yes No Yes No Yes
Controls No Yes No Yes No Yes

Observations 894 894 894 894 874 874
R2 0.07 0.10 0.09 0.11 0.10 0.11

Notes: Regression estimates, with robust standard errors (clustered at subject level) in parentheses. The
dependent variable is the neglect χ̂

j
i that is implied in a given belief. The sample includes each of subjects’

eight beliefs in the Selected and Control conditions. Columns (1) and (2) report median regressions, and
columns (3)–(6) are OLS regressions. In columns (3) and (4), the dependent variable is winsorized at |χ̂ j

i | = 3.

In columns (5) and (6), the sample is trimmed at |χ̂ j
i | = 3. Controls include gender, high school grades, and

log monthly disposable income. ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.

excludes observations with |χ̂ j
i | > 3. Throughout, the coefficient

is quantitatively large and suggests that—relative to the control
treatment—subjects in Selected exhibit a neglect of 0.4−0.6 units
of χ .

The bias implies lower earnings of subjects in the Selected
condition. The expected profit from all eight belief formation tasks
is €6.33 in Selected and €10.32 in Control. Actual profits, which
include a show-up fee and depend on a random draw, are €17.56
($20) in Control and €12.73 ($15) in Selected.

III.B. Robustness Treatments

1. Sequential Tasks. To assess the extent to which the si-
multaneous presentation of two variables induces neglect, I im-
plemented treatment Sequential. This treatment was randomized
along with Control and Selected within experimental sessions. Se-
quential is identical to Selected, except that all eight tasks were
presented in eight, rather than four, consecutive rounds. Online
Appendix D discusses the results from this treatment in detail.
Overall, the results are very similar to those in Selected. To illus-
trate, Figure I plots the median and mean χ̂

j
i across treatments,

along with standard error bars. Although the median neglect
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FIGURE I

Overview of Neglect χ̂
j

i across Treatments

The left panel shows the median χ̂
j

i across all subject-task observations. The
right panel shows the average χ̂

j
i across all subject-task observations, where as in

Table V, columns (3) and (4), the data are winsorized at |χ̂ j
i | = 3. For treatment

Feedback, the sample median and average are computed for the last eight beliefs
to keep the results comparable to the other treatments. Standard error bars are
computed based on clustering at the subject level.

estimate is significantly lower in Sequential than in Selected, the
averages are very similar ( ¯̂χ j

i = 0.49 in Selected and ¯̂χ j
i = 0.42

in Sequential). Moreover, neglect in Sequential is significantly
higher than in Control.7

2. Feedback. A relevant question is whether people learn
about their errors through feedback. In treatment Feedback, sub-
jects first solved six tasks (again, two per period) that had the
same structure as those in Selected but different signal realiza-
tions. Then they completed the same eight tasks as subjects in
Selected. Thus, I can compare beliefs across treatments for the
same tasks, yet subjects in Feedback have already completed six
tasks and received feedback on them. After each period, subjects
received feedback about their performance: (i) they were reminded
of their continuous belief statement; (ii) they were informed of the
corresponding true state; and (iii) they received information on the
profits that would result from the respective task in case it would

7. As documented in Table 8 in Online Appendix D, median and average
neglect are consistently lower in Sequential than in Selected. Although these dif-
ferences are usually not statistically significant, they provide some very tentative
evidence that the simultaneous presentation of problems induces higher cognitive
load, which in turn increases neglect. See Section IV for a dicussion along these
lines.
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FIGURE II

Distribution of Modal Neglect Types χ̂i in Treatments Selected, Sequential, and
Feedback

The left panel shows the distribution of all estimated neglect types, and the right
panel the distribution of neglect types for which at least three beliefs are type-
consistent (53% of all subjects). For belief j to be consistent with the estimated
type means that |χ̂i − χ̂

j
i | � 0.05.

be selected for payment. Online Appendix E provides a detailed
analysis of the data. The data show no indication that feedback
reduces the amount of neglect. Figure I illustrates this result.

III.C. Decision Rules and Heterogeneity Analysis

1. Type Distribution. To examine the subject-level distribu-
tion of neglect, I seek to identify a subject’s neglect type χ̂i, that is,
an estimate of a subject’s solution strategy, net of computational
errors and heuristic rounding. For this purpose, for each subject
i and candidate type t ∈ {−1, −0.9, . . . , 2}, I count how many of
the implied χ̂

j
i (see equation (6)) satisfy |t − χ̂

j
i | � 0.05. Then, I

classify each subject as χ̂i = tmax, where tmax is the candidate type
that rationalizes the largest number of beliefs (see Fragiadakis,
Knoepfle, and Niederle 2016 for a similar approach).8

The left panel of Figure II presents a histogram of these modal
neglect types χ̂i in treatments Selected, Sequential, and Feedback.
The data reveal a bimodal type distribution: 60% of all subjects
are best characterized as Bayesian (χ̂i = 0) or full neglect (χ̂i = 1).
For example, of those 150 subjects that are not approximately
rational, one third (51) are classified as exactly or almost exactly

8. If more than one type rationalizes the maximal number of beliefs, I compute
the average across t.
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full neglect types (0.95 � χ i � 1.05).9 In contrast, in treatment
Control, 80% of all subjects are classified as exactly χ̂i = 0; see
Figure 7 in Appendix C.

2. Across-Task Consistency and Heuristic Responses. Be-
cause the left panel of Figure II shows modal types, the figure
does not take into account the within-subject-across-task con-
sistency in stated beliefs. To address this, I look at the num-
ber of beliefs that are consistent with a subject’s modal type,
where type-consistent means that the neglect parameter im-
plied by a belief statement is close to the overall estimated type:
|χ̂i − χ̂

j
i | � 0.05. Figure 1 in Online Appendix C shows a histogram

of the number of type-consistent beliefs. The average and me-
dian number of type-consistent beliefs are 3.2 and 3. The nois-
iness of the data in bounded rationality experiments—and the
fact that a considerable fraction of subjects does not appear to be-
have according to a stable type—has recently been highlighted by
Fragiadakis, Knoepfle, and Niederle (2016).10 They and Costa–
Gomes and Crawford (2006) propose that a subject should be
viewed as having a stable type if at least 40% of their experi-
mental actions are type-consistent.

The right panel of Figure II shows the distribution of modal
neglect types, restricting attention to those 53% of all subjects
for which at least three beliefs (∼40%) are type-consistent. The
two spikes at χ i = 0 and χ i = 1 largely remain, yet the vast
majority of all types χ̂i �= 0, 1 are relatively inconsistent across
tasks. A perhaps remarkable 87% of those subjects who exhibit
stable identifiable decision types can be characterized as exactly
rational or exactly full neglect. Very few subjects exhibit a stable
decision type of partial adjustment from neglect.

9. Figure 5 in Online Appendix C plots a histogram of the subject-task-specific
χ̂

j
i , that is, the underlying raw beliefs data. Naturally, this distribution is noisier

but also bimodal with spikes at 0 and 1.
10. The noisiness of the beliefs data appears to be at least partly driven

by heuristic rounding to the nearest multiple of 5 or 10, akin to the patterns
documented in a large survey literature on subjective expectations about economic
variables (Manski 2004). In my data, 69% of reported beliefs are multiples of 10
and 84% are multiples of 5. These numbers are probably inflated because the
Bayesian or full neglect benchmarks are themselves usually multiples of 5 or 10,
compare Table II. Yet when I exclude beliefs that correspond to the Bayesian or
full neglect benchmarks, still 53% are multiples of 10 and 75% multiples of 5.
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In the full sample of subjects, for the χ̂i = 0 types, 4.5 beliefs
are type-consistent, on average. For the χ̂i = 1 types, 3.4 beliefs
are type-consistent, on average. However, for all types χ̂i �= 0, 1,
the average number of type-consistent beliefs is only 2.0. Overall,
these patterns suggest that across-task consistency is relatively
low, in particular for the χ̂i �= 0, 1 types.11 Still, to the extent that
there is within-subject consistency in my data, it points to the
presence of two fundamentally different updating types.

As a final remark on within-subject consistency, it is worth
pointing out that the relatively inconsistent subjects are not just
random noise around the rational benchmark. The average and
median task-level implied neglect parameters of relatively incon-
sistent subjects are χ

j
i = 0.35 and χ

j
i = 0.40. This shows that the

inconsistent types do neglect selection—just in a quantitatively
inconsistent fashion across tasks.

3. Correlates of Neglect. Table 4 in Online Appendix B in-
vestigates the correlates of neglect in treatments Selected, Se-
quential, and Feedback. I find that better high school grades and
longer response times are both negatively correlated with neglect.
The quantitative magnitude of the relationship between response
times and neglect is small. Interpreted causally, the regression
coefficients suggest that response times would have to increase
by about four minutes per task to move a full neglect belief to a
Bayesian belief. However, the average response time in the data
in the three treatments that are considered here is only 48 sec-
onds, and it is 52 seconds in treatment Control. These magnitudes
suggest that the type heterogeneity is not merely the result of the
neglect types being lazier than the rational types.

IV. MECHANISMS

IV.A. Framework

Understanding the mechanisms behind errors in statistical
reasoning is likely to be relevant not only for theorists who are
interested in formalizing and endogenizing people’s errors but
also for policy in terms of what will be an effective method to

11. The intracorrelations between modal, median, and average neglect types
are all between 0.75 and 0.92. Figures 2–4 in Online Appendix C present his-
tograms of (i) median subject-level neglect, (ii) average neglect parameters, and
(iii) the subject-level standard deviation of implied neglect parameters.
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correct biased beliefs. To structure the analysis, I pit two hypothe-
ses against each other.

1. Theory A: Incorrect Mental Model. Participants have an
initial mental default model according to which the unobserved
signals are not top of mind. This default model could result from
intuitive system 1 reasoning (Kahneman 2011), or it could be re-
trieved from memory as the “normal” version of a class of problems
that people know how to solve (Kahneman and Miller 1986). If
the unobserved signals do not come to mind, participants directly
use the (visible) sample mean to estimate the population mean,
akin to the psychological metaphor of a naive intuitive statisti-
cian who directly uses sample moments to estimate population
analogs (Fiedler and Juslin 2006; Juslin, Winman, and Hansson
2007). This simple averaging process may be loosely summarized
as “what you see is all there is.”

If selection does come to mind, the participant reasons about
whether and how it needs to be corrected for. Whether this hap-
pens partly depends on how the decision maker allocates cognitive
resources between (i) setting up a mental model and (ii) computa-
tional implementation. In particular, people should be less likely
to develop a correct mental model if they are cognitively busier
with (or distracted by) computationally implementing a given so-
lution strategy.

Linking this account to the literature, the importance of in-
correct mental models is highlighted by an active theoretical lit-
erature (e.g., Jehiel 2005; Eyster and Rabin 2010; Schwartzstein
2014; Gabaix 2014; Esponda and Pouzo 2016; Spiegler 2016;
Bohren and Hauser 2017; Heidhues, Kőszegi, and Strack 2018;
Gagnon-Bartsch, Rabin, and Schwartzstein 2018). For example,
the model in Spiegler (2017) focuses on how an agent naı̈vely ex-
trapolates from partial data, which is reminiscent of the sample
selection problem in this paper. Indeed, incorrect mental mod-
els are often implicitly, and sometimes explicitly, motivated and
modeled as resulting from attentional processes (Gennaioli and
Shleifer 2010).

2. Theory B: Conceptual or Computational Difficulty of Ac-
counting for Selection. Participants are aware of the signals they
do not see but struggle with the conceptual or computational dif-
ficulty of correcting for selection.
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It is worth highlighting that these two stories are not nec-
essarily mutually exclusive but relate to two distinct steps of a
sequential reasoning process. In the first step, it is determined
whether selection (the unobserved signals) are top of mind. In the
second step, the decision maker reasons about how to correct for
selection, if it comes to mind in the first place. In principle, it is
conceivable that selection does not come to mind, but even if it did
come to mind, the participant wouldn’t be able to account for it.

The experiments that follow test the relative importance of
these two stories by exogenously manipulating parameters that
should lead to changes in reported beliefs according to one the-
ory but not the other. I conduct three such comparative statics
exercises:

(i) Holding fixed the presence of unobserved signals, I elim-
inate the presence of the selection problem. If neglect is
largely driven by theory B, it should disappear in this
treatment. If neglect is largely driven by theory A, it
should remain roughly constant.

(ii) Holding fixed the conceptual and computational difficulty
of accounting for selection, I increase the computational
complexity of following a “what you see is all there is”
averaging heuristic. If neglect is largely driven by the-
ory B, then such complexity variations should have no
effect. Under theory A, higher computational complex-
ity should increase neglect because the decision maker is
“distracted” by computational implementation and thus
devotes less resources to thinking about what is not top
of mind or visible.

(iii) Holding fixed the conceptual and computational difficulty
of accounting for selection, I exogenously draw partici-
pants’ attention to the unobserved signals. If neglect is
largely driven by theory A, it should substantially de-
crease. If neglect is largely driven by theory B, it should
remain constant.

IV.B. Eliminating the Selection Problem

1. Experimental Design. To test comparative statics predic-
tion i, I implemented treatment Random. Random closely follows
treatment Selected. The true state to be estimated now consists
of the average of eight random draws from the same simple

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article-abstract/135/3/1363/5821301 by H

arvard C
ollege Library, C

abot Science Library user on 30 June 2020



1386 THE QUARTERLY JOURNAL OF ECONOMICS

discretized uniform distribution as before.12 Deviating from the
procedure in Selected, in Stage 3 of the experiment, a subject
observed three signals that were selected at random, rather than
based on a subject’s first guess. The timeline of this treatment was
otherwise identical to that in treatment Selected. In this setup,
the Bayesian belief is given by

(7) bB =
[∑4

k=1 sk∈Z(b1)

]
+ 4 · E[sk�∈Z(b1)]

8
,

while a “what you see is all there is” benchmark is given by the
same equation as before:

(8) bN,1 =
∑4

k=1 sk

4
.

It is worth pointing out that this treatment also directly speaks
to the two potential neglect benchmarks for treatment Selected
discussed in Section II.B: (i) a decision rule that assumes that
subjects completely ignore information that is not visible on their
computer screen and (ii) a decision rule that posits that partici-
pants are aware of the signals they do not see but wrongly assign
them their unconditional rather than conditional expectation. If
(ii) was the empirically correct benchmark, then subjects in Ran-
dom should state Bayesian beliefs.

2. Results. The results are described in detail in Online Ap-
pendix F. To summarize, behavior in this treatment is very sim-
ilar to behavior in treatment Selected. I again compute implied
subject-level neglect parameters χ i, where 0 corresponds to the
Bayesian and 1 to the full neglect benchmark noted above. As
shown in Figure III, the distribution of stated beliefs is again bi-
modal, with subjects either fully neglecting what they don’t see or
behaving rationally. Indeed, as shown in Online Appendix F, the
distribution of neglect in this treatment is statistically indistin-
guishable from the one in treatment Selected.

12. In this treatment, the true state was determined as the average of eight
(rather than six) random draws to allow for a larger number of invisible signals.
With only two invisible signals, the Bayesian and full neglect benchmarks would
have been too close to each other to allow for robust analyses that distinguish
between these two updating types.
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FIGURE III

Distribution of Modal Neglect Types χ̂i in Treatment Random

See the main text for the specification of the Bayesian and full neglect bench-
marks. The left panel shows the distribution of all estimated neglect types, and
the right panel the distribution of neglect types for which at least three beliefs are
type-consistent (61% of all subjects). For belief j to be consistent with the estimated
type means that |χ̂i − χ̂

j
i | � 0.05.

I view the results of this treatment as suggesting two impli-
cations. First, a “what you see is all there is” heuristic describes
behavior better than a theoretical benchmark in which subjects
actively impute unconditional expectations for unobserved sig-
nals. This suggests that at least a majority, and probably a large
majority, of those subjects that are classified as “neglect” types in
treatment Selected do not at all take into account the unobserved
signals. Second, the psychological mechanism behind neglect is
probably not (just) a conceptual misunderstanding of selection
problems but instead a general incorrect mental model according
to which the unobserved signals do not come to mind in the first
place.

IV.C. Computational Complexity as Distraction

1. Experimental Design. Next, I study how computational
complexity affects selection neglect, in particular how it might in-
duce cognitive load and hence distract participants from the un-
observed signals. The experiments below exogenously manipulate
the computational complexity of the updating problem but hold
fixed the difficulty of accounting for selection itself. This thought
experiment has the attractive feature that it narrows down the
pathways through which complexity can affect belief updating: if
the difficulty of correcting for selection remains unchanged, then
differences in belief updating can plausibly be attributed to an
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effect of computational complexity on how participants approach
the problem (develop a mental model) in the first place. Given the
absence of a general theory of what is complex, the experiments
operationalize computational complexity in two different and ar-
guably intuitive ways: (i) the complexity of the signal space and
(ii) the number of signals in a given updating problem.

Complexity I: The Complexity of the Signal Space. To ex-
ogenously vary the complexity of the signal space, I conducted
two treatments, Complex and Simple. These two treatments were
both identical to treatment Selected except that the set of num-
bers from which the true state was determined was varied. In
Complex, the signal space was given by

{70, 70, 70, 70, 70, 70, 104, 114, 128, 136, 148, 150}.

In Simple, it was

{70, 70, 70, 70, 70, 70, 130, 130, 130, 130, 130, 130}.

These two treatments are identical in a number of ways: (i) the
prior is 100; (ii) the conditional expectations of being above and
below 100 are 130 and 70, respectively; (iii) most important, they
leave the difficulty of accounting for selection constant if subjects
state a first guess of above 100 (i.e., in practice, when they receive a
first signal above 100). In such cases, accounting for selection only
requires subjects to notice (remember) that they are missing a few
70s on their decision screens. Thus, in both treatments, people’s
potential problems in computing conditional expectations cannot
drive any results. For example, in one task, subjects in Complex
observed 150, 104, 148, 114 on their decision screens, whereas
those in Simple observed 130, 130, 130, 130.

Complexity II: The Number of Signals. Treatment Few was
identical to Complex in almost all dimensions. The only difference
is the number of random draws (signals) that determined the true
state and were shown to subjects. In Few, the state was determined
as the average of two, rather than six, random draws.

Subjects in Few also observed a first signal and then issued a
first binary guess. Given that there are only two signals in total in
this treatment, subjects then potentially observed one more signal
from the information source. Subjects only observed this second
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signal if it was above 100 and the subject’s first guess was above
100, or if the second signal was below 100 and the subject’s first
guess below 100. Thus, in many tasks, subjects did not receive an
additional (second) signal from the information source on the sec-
ond decision screen. Notice that if subjects observe both signals,
there is no selection problem, so that by design, the analysis of
Few has to exclude the three experimental tasks for which this
was the case.

Comparing treatments Few and Complex leaves the signal
space and hence the difficulty of backing out unobserved signals
unchanged. Still, the computational complexity of computing pos-
teriors differs across treatments. For example, in one task, sub-
jects in Complex observed 150, 104, 148, 114 on their decision
screens, while those in Few observed 150.

In summary, all treatments hold the diffculty of accounting
for selection constant but vary the computational burden of com-
puting beliefs. A notable difference to earlier cognitive load exper-
iments is that here cognitive load arises endogenously as a feature
of the decision problem, rather than being exogenously induced
by the experimenter.

Finally, note that comparing treatments Simple and Few is
not meaningful by design because these treatments differ in two
dimensions in ways that operate in opposite directions. Treatment
Simple is simpler than Few in that is has a simpler signal space,
but treatment Few is simpler in that it features a smaller num-
ber of signals. Thus, the analysis compares Complex to Simple
and Complex to Few. Treatments Complex, Simple, and Few were
all randomized within the same experimental sessions; compare
Table III. Tables 5 and 6 in Online Appendix B show the signal
realizations in these treatments.

2. Manipulation Checks. Given that the treatment varia-
tions here are arguably relatively subtle and do not have im-
mediate antecedents in the literature, it is worth performing a
manipulation check to verify that the computational complexity
is indeed meaningfully higher in Complex than in Simple and
Few. To provide such evidence, I consider data on (i) response
times and (ii) the noisiness of responses across tasks. Higher com-
putational complexity should translate into (i) longer response
times and (ii) beliefs data that are noisier, or less consistent across
tasks. Following equation (6), I estimate decision noise by compar-
ing a subject’s belief in task j with the belief they “should have”
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stated given their estimated overall type χ̂i: |ε̂ j
i | = |χ̂ j

i − χ̂i|, where
χ̂i is the overall estimate of i’s type across tasks as derived in
Section III.

Table 7 in Online Appendix B shows that both response times
and decision noise are indeed significantly lower in Simple and
Few, as compared with Complex. This provides reassuring evi-
dence that the treatment variations actually induced meaningful
variations in computational complexity as perceived by the exper-
imental participants.13

3. Results. By design of the experiment, the analysis is re-
stricted to those tasks in which subjects’ first signal was above 100
so that any unobserved signal had to be a 70 in all treatments.
Figure IV plots median and average levels of χ̂

j
i across treat-

ments. Here, just like in the regression tables, |χ̂ j
i | is winsorized

at 3 when I compute treatment averages. As predicted, treatment
Complex generates substantially higher levels of neglect than do
Simple and Few. The median implied neglect in Simple and Few
is 0, though the averages are strictly positive ( ¯̂χ j

i = 0.13 in Simple
and ¯̂χ j

i = 0.22 in Few).
Table VI provides a set of corresponding regression analy-

ses. In all regressions, the omitted baseline category is treatment
Complex. By including treatment dummies for Simple and Few,
the regressions compare Complex with Simple and Complex with
Few.

Both treatment dummies have negative coefficients that are
statistically significant. These results hold both in the analysis
with median regressions (columns (1) and (2)) and in robustness
checks in which the dependent variable is winsorized or trimmed
(columns (3)–(6)). In terms of quantitative magnitude, the coef-
ficients suggest that both types of complexity reductions caused
a reduction in neglect by about 0.2−0.3 units of χ̂

j
i . Thus, the

13. A potential issue with the interpretation that higher computational com-
plexity increases decision noise is that it is impossible for me to formally disentan-
gle the story that decision error is lower for less computationally complex tasks
from a scenario where decision error conditional on type is independent of compu-
tational complexity, but the more complex treatment changes the type distribution
and decision errors are larger for neglect types. However, this alternative inter-
pretation of the results is less plausible because the calculations that are required
to be Bayesian are unambiguously more complicated than those required to follow
the neglect benchmarks.
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FIGURE IV

Overview of Neglect χ̂
j

i across Treatments

The left panel shows the median χ̂
j

i across all subject-task observations. The
right panel shows the average χ̂

j
i across all subject-task observations, whereas in

columns (3) and (4) of Table V the data are winsorized at |χ̂ j
i | = 3. Standard error

bars are computed based on clustering at the subject level. As explained in the
text, by design, the analysis of treatments Complex, Simple, and Few is restricted
to those experimental tasks in which the first signal was above 100. Moreover, also
by design, for treatment Few the analysis excludes those tasks in which subjects
observed both (and hence all) signals, so no selection problem was present. As
explained in the main text, these data exclusions follow mechanically from the
construction of the different treatments.

increased cognitive load from the computational stage of the prob-
lem appears to have systematic effects on how participants ap-
proach the conceptual stage of forming a mental model to begin
with. This provides further evidence that in this context selection
neglect is not (just) driven by the conceptual or computational
difficulty of accounting for selection—as this was held constant
across treatments—but by an incorrect mental model.

IV.D. Nudge Evidence

1. Experimental Design. If it is true that participants in Se-
lected entertain an incorrect mental model, then nudging their
attention toward (or reminding them of) the existence of the se-
lection problem might attenuate the bias. Specifically, treatment
Nudge was identical to Selected, except that both the end of sub-
jects’ written instructions and their decision screens contained
the following hint:

“HINT: Also pay attention to those randomly drawn balls that are
not shown to you by the information source.”
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TABLE VI
TREATMENTS COMPLEX, SIMPLE, AND FEW

Dependent variable:
Neglect χ̂

j
i

Omitted category: Median OLS OLS
Complex regression winsorized trimmed

(1) (2) (3) (4) (5) (6)

1 if Simple −0.29∗∗ −0.26∗∗∗ −0.28∗∗∗ −0.27∗∗∗ −0.25∗∗∗ −0.25∗∗∗
(0.12) (0.10) (0.09) (0.09) (0.08) (0.09)

1 if Few −0.29∗∗ −0.24∗∗ −0.17∗ −0.29∗∗∗ −0.18∗∗ −0.22∗∗∗
(0.12) (0.10) (0.09) (0.09) (0.08) (0.08)

Session FE Yes Yes Yes Yes Yes Yes
Task FE × prior No Yes No Yes No Yes
Controls No Yes No Yes No Yes

Observations 1,177 1,177 1,177 1,177 1,138 1,138
R2 0.01 0.02 0.03 0.08 0.04 0.06

Notes: Regression estimates with robust standard errors (clustered at subject level) in parentheses. The
sample includes treatments Complex, Simple, and Few. By the design of the experiment, the sample is
restricted to those tasks in which following the first signal implies a first guess above 100. In treatment
Few, experimental tasks in which subjects observe both signals are necessarily excluded because there is no
scope for neglecting selection. Columns (1) and (2) report median regressions, and all other columns OLS
regressions. In columns (3) and (4), |χ̂

j
i | is winsorized at 3. In columns (5) and (6), the sample is trimmed at

|χ̂ j
i | = 3. Controls include gender, high school grades, and log monthly disposable income. ∗ p < .10, ∗∗ p <

.05, ∗∗∗ p < .01.

Treatment Nudge was implemented along with a replication
of treatment Selected to facilitate within-session randomization
of subjects into treatments.14

2. Results. Figure IV shows that treatment Nudge gener-
ates lower levels of neglect than Selected Replication. Table VII
provides a set of corresponding regression analyses. Treatment
Nudge reduces neglect by about 0.2−0.4 units of χ̂

j
i , which

corresponds to about half of the treatment difference between

14. To investigate whether subjects are capable of computing the conditional
expectations that are required in the present experiment, treatments Selected
and Sequential contained two incentivized follow-up questions: “Suppose you
knew that ten balls were randomly drawn and that all of these balls had num-
bers GREATER than 100. What would you estimate is the average of these ten
numbers?” Subjects were asked the same question with GREATER replaced by
SMALLER. For each question, subjects received €0.50 for a correct response and
€0.20 if the response was within 5 of the correct response. Figure 8 in Online
Appendix C presents histograms of subjects’ responses to these two questions. A
large majority (almost 80%) of subjects guess the correct conditional expectations.
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TABLE VII
TREATMENTS SELECTED REPLICATION AND NUDGE

Dependent variable:
Neglect χ̂

j
i

Median OLS OLS
regression winsorized trimmed

(1) (2) (3) (4) (5) (6)

0 if Selected Repl., −0.40∗∗∗ −0.20∗∗ −0.20∗∗ −0.21∗∗ −0.22∗∗∗ −0.24∗∗∗
1 if Nudge (0.11) (0.08) (0.09) (0.09) (0.08) (0.08)

Session FE Yes Yes Yes Yes Yes Yes
Task FE × prior No Yes No Yes No Yes
Controls No Yes No Yes No Yes

Observations 1,174 1,174 1,174 1,174 1,154 1,154
R2 0.02 0.10 0.03 0.11 0.03 0.10

Notes: Regression estimates with robust standard errors (clustered at subject level) in parentheses. The
sample includes treatments Selected Replication and Nudge. Columns (1) and (2) report median regressions,
and all other columns OLS regressions. In columns (3) and (4), |χ̂

j
i | is winsorized at 3. In columns (5) and (6),

the sample is trimmed at |χ̂ j
i | = 3. Controls include gender, high school grades, and log monthly disposable

income. ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.

Selected and Control. In Selected Replication, the median and av-
erage neglect are χ̂

j
i = 0.50 each, while in Nudge the median is

χ̂
j

i = 0.10 and the average χ̂
j

i = 0.30.

IV.E. Discussion

In summary, the evidence from the treatments aimed at iden-
tifying mechanisms suggests that at least a large part of the rea-
son participants neglect selection in my experiments is that the
unobserved signals are not top of mind in the first place, so par-
ticipants operate with an incorrect mental model and directly use
the sample mean to estimate the population mean.

At the same time, these results do not imply that the con-
ceptual or computational difficulty of accounting for selection is
unimportant. First, in treatment Nudge, neglect did not disappear
despite the fairly strong hint, which suggests that some partici-
pants also struggle with the conceptual logic of selection. Sec-
ond, this experiment was deliberately designed to make overcom-
ing selection both conceptually and computationally reasonably
simple, yet doing so is likely much more difficult in real-world
applications.
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V. REPLICATION

The experiments replace a set of similar experiments, on
which an earlier working paper version of this article was based.
The earlier experiments followed a very similar logic to the ones
described above. Subjects estimated an abstract true state and re-
ceived computer-generated signals that induced a selection prob-
lem of the same kind as above. Although there are a few differ-
ences between the earlier experiments and the ones discussed in
the main text, perhaps the most important difference is that in
the earlier experiments, the true state was based on 15, rather
than 6, random draws. Thus, in the earlier experiments, subjects
also needed to account for the base rate in processing selected
signals. The new design eliminates this additional difficulty. Be-
cause the earlier experiments are very similar to the ones re-
ported above, they can be viewed as a replication or robustness
exercise. In particular, the earlier experiments also contained ver-
sions of treatments Selected, Control, Nudge, Complex, and Sim-
ple. Online Appendix G summarizes these earlier experiments
and the corresponding results. These experiments also show that
(i) subjects neglect selection on average, (ii) the type distribu-
tion exhibits a bimodal structure, (iii) an experimental nudge to
consider the off-screen signals has a significant effect on beliefs,
and (iv) increasing the computational complexity of the decision
problem—while holding the difficulty of accounting for selection
constant—increases the frequency of neglect.15

VI. DISCUSSION AND RELATED LITERATURE

This article has shown that people have a strong average
propensity to neglect selection problems when forming beliefs,
even when the information-generating process is known and

15. Apart from providing a replication, the earlier experiments also allow for
one extension: a study of the responsiveness of subjects’ wrong beliefs to observing
others holding different beliefs, even though everybody received the same selected
information. To investigate this, I implemented experiments that were similar to
treatment Selected, except that after subjects had provided their continuous point
belief about the true state, they were shown the beliefs of two randomly selected
participants from the same experimental session who completed the same task.
Then, subjects were provided with an opportunity to revise their beliefs. However,
in the data, subjects appear to be very confident in their own way of looking at the
problem and largely abstain from revising their beliefs. See Online Appendix G.6
for details.
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transparent. A detailed analysis of the mechanisms that give rise
to biased belief updating has highlighted the important role of
what comes to mind and the resulting mental models. As reflected
by the type distribution of neglect, these mental models appear to
be binary in nature: subjects either employ a simplistic (and likely
automatic) default model of the environment that ignores unob-
served data, or they develop an objectively correct representation.
An important result of the analysis is that this neglect should not
be thought of as an exogenously given neglect parameter that is
constant across individuals or even contexts. Rather, the extent
to which subjects neglect selection is partly determined by the
computational complexity of the decision problem, and the extent
to which the decision maker’s attention is drawn to the presence
of selection.

As discussed in the introduction, the article’s approach and
results speak to the informal metaphor of a naive intuitive
statistician in cognitive psychology (see Fiedler and Juslin 2006
and Juslin, Winman, and Hansson 2007 for overviews; Brenner,
Koehler, and Tversky (1996) and Koehler and Mercer (2009) for
applications to selection problems).16 This metaphor and a simple
averaging heuristic also characterize much recent experimental
economics work on information-processing (Grimm and Mengel
2020; Eyster, Rabin, and Weizsäcker 2018; Graeber 2018; Enke
and Zimmermann 2019), including contemporaneous work on en-
dogenous sample selection problems (Araujo, Wang, and Wilson
2018; Charness, Oprea, and Yuksel 2018; Esponda and Vespa
2018; Jin, Luca, and Martin 2018). Indeed, a long line of work
on network experiments has documented that a deGroot-style av-
eraging heuristic often describes behavior in complex situations
well. The theme that connects these papers is that people appear
to have a general tendency to simplify complex information struc-
tures by following an averaging heuristic. What sets this article
apart from other contributions is (i) the focus on selection prob-
lems under a known data-generating process and (ii) a detailed
study of the role of incorrect mental models for neglect, including
(iii) an exploration of the effect of computational complexity on

16. Work on the availability heuristic (Tversky and Kahneman 1973) is also
related in its focus on salient information. However, experimental evidence for
the availability heuristic usually involve showing that irrelevant information in-
fluences judgment such as in free-form cued recall problems, while in my experi-
ments, relevant information is neglected.
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how people form mental models. Thus, the article is close to other
work that focuses on why people make mistakes in contingent
reasoning. Other such work has highlighted the importance of in-
ferring from simultaneous versus sequential data (Ngangoue and
Weizsäcker 2015; Esponda and Vespa 2016) and of uncertainty
(Martı́nez-Marquina, Niederle, and Vespa 2017).

The article results also contribute to an active theory litera-
ture that highlights the importance of incorrect mental models.
Frequently, researchers motivate incorrect mental models by ap-
pealing to constraints on what is top of mind, and this article
provided encouraging evidence in this regard. Going forward, a
relevant issue for both the theory and the experimental literature
will be to identify and describe (i) which incorrect mental mod-
els people form and (ii) how these depend on contextual features
that are irrelevant under traditional theories, such as complexity,
salience, and environmental cues that activate different memory
traces.

HARVARD UNIVERSITY AND NATIONAL BUREAU OF ECONOMIC

RESEARCH

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online. Data and code replicating ta-
bles and figures in this article can be found in Enke (2020), in the
Harvard Dataverse, doi: 10.7910/DVN/1YYUN3.
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