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Abstract

In many economic environments, people need to learn from systematic ab-

sences and non-occurrences. For example, news media differentially reports on

events and corresponding non-events and social networks like Facebook selectively

tailor their newsfeeds according to users’ prior behavior. This paper studies peo-

ple’s belief formation rules in such selection contexts through a series of tightly

structured experiments. Across various treatment variations, some subjects fully

correct for selection, but many fail to take into account information they do not

see and state beliefs that reflect exactly a full neglect benchmark. Follow-up treat-

ments characterize the effects of environmental complexity on the presence of the

updating bias and investigate the mechanism through which complexity operates.

The results document that people’s updating rule systematically depends on com-

putational complexity and that complexity matters because it affects what people

pay attention to: moderate complexity appears to induce cognitive busyness, which

in turn distracts subjects from attending to the selection effect in the background

of the process. Hence, most people can be debiased through a simple attentional

nudge. However, exposing subjects to the conflicting beliefs of more rational par-

ticipants is not sufficient to draw their attention to their mistaken reasoning.
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1 Introduction

This paper studies people’s cognition in contexts that require learning from something

they do not see. An important example of this phenomenon is selection problems. For

instance, news media routinely cover certain events, but not the corresponding non-

events: one rarely reads headlines such as “No terror attack in Afghanistan today.” Re-

lated selection problems arise because people are often predominantly exposed to infor-

mation that aligns with their priors. For example, people with similar beliefs mechani-

cally tend to enter the same environments and are hence less likely to meet those with

opposing views. Likewise, social networks like Facebook exclude stories from newsfeeds

that go against users’ previously articulated views, hence producing “echo chambers”

(Bishop, 2009; Sunstein, 2009; Pariser, 2011; Mullainathan and Shleifer, 2005). Re-

gardless of the specific mechanism, these contexts share the feature that no news is

news, implying that people need to draw inferences from information they do not see.

But even independent of selection effects, belief updating can require the need to com-

prehend the meaning of non-events. For example, when the stock market does not pick

up after the announcement of a government stimulus, people again need to infer from

“nothing” (Hearst, 1991).

Information structures with these characteristics pervade economic and social life

and a nascent theoretical literature has indeed started linking the neglect of selection

problems to issues such as belief polarization (Levy and Razin, 2015), savings behavior

(Han and Hirshleifer, 2015), investment decisions (Jehiel, 2015), and network dynam-

ics (Jackson, 2016). At the same time, little is known empirically about the cognitive

strategies people employ to deal with information they do not see, whether and how be-

lief updating depends upon the structure of the environment, and which psychological

mechanisms may generate boundedly rational belief formation. After all, economists’

interest arguably lies not only in documenting anomalies in statistical reasoning but

also in the “first principles” underlying such errors (e.g., Fudenberg, 2006). This paper

makes progress by (i) cleanly identifying people’s updating rules in selection contexts

and (ii) studying in detail the mechanisms underlying biased updating, including its

dependence on environmental complexity and the reason why and how complexity

matters.

Studying belief updating in the presence of absences and non-occurrences poses

the challenge that people typically do not know the process that generates their in-

formation. This paper circumvents this problem by developing a tightly structured in-

dividual decision-making experiment that strips away all structural and strategic un-

certainty. Subjects have to estimate an unknown state of the world and are paid for

accuracy. In the beginning, one participant and five computer players each obtain a
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private signal over the state, drawn from the simple discretized uniform distribution

{50,70, 90,110, 130,150}. The true state that subjects need to estimate is given by the

average of the random draws. Both the subject and the computer players then select

into one out of two groups based on whether their respective signal is above or below

100. Thereafter, subjects are provided with the option to update their beliefs by observ-

ing the private signal of a subset of the computer players. This follows a simple and

known rule: whenever subjects do not observe the signal of a given computer player,

that player must have entered the opposite group. Thus, akin to many of the moti-

vating examples, subjects predominantly observe the signals of computer players who

received similar signals. Hence, subjects have to infer the expected signal of the other

players from the fact that these players entered the other group and are not visible.

Given the signal space, computing these conditional expectations is relatively straight-

forward. After subjects have observed the signals of the computer players, they guess

the state. Crucially, the entire signal-generating process is computerized and known to

subjects.

In a between-subjects design, I compare beliefs in this treatment with those in a

control condition in which subjects receive the same objective signals as those in the

main treatment condition, yet without a selection problem.

The results document that beliefs exhibit large and statistically significant differ-

ences across the two treatments, showing that people neglect information they do not

see on average. Such neglect induces a specific form of path-dependence in beliefs:

whenever a subject’s private signal is relatively high (low), they select into the group

in which they predominantly observe high (low) signals. Neglecting the resulting se-

lection problem reinforces subjects’ own signal and hence induces a belief pattern that

is reminiscent of common notions of belief polarization across groups. These biased

beliefs translate into significantly lower earnings in the treatment group.

These average patterns mask considerable heterogeneity. To characterize subjects’

precise decision rules, the analysis estimates an individual-level parameter that pins

down updating rules in relation to Bayesian rationality. The distribution of updating

types follows a pronounced bimodal structure: subjects either fully account for what

they do not see or entirely neglect it. In particular, the vast majority of the neglect types

compute beliefs that reflect exactly the “correct” solution, conditional on fully ignoring

what they do not see. Thus, the neglect types appear to entertain a specific strategy

and execute that strategy through effortful calculations. The bimodality of the type

distribution is robust to a number of variations of the experimental design.

The pronounced bimodality in types and the observation that many subjects com-

pute exactly the fully biased solution suggest that subjects form beliefs through effort-
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ful analytic calculations as opposed to quick, automatic, and intuitive responses. In line

with this interpretation, the analysis documents that the relationship between neglect

and response times – a commonly used proxy for cognitive effort in laboratory exper-

iments (Rubinstein, 2007, 2016) – is quantitatively very small. In particular, the rela-

tionship is much too small to plausibly explain the observed difference in updating rules

as a result of differences in effort.

The (reduced-form) identification of selection neglect constitutes only a first step in

developing the empirical knowledge that is likely to be of use for economics. For exam-

ple, Fudenberg (2006) and others have argued that the development of a set of empir-

ical regularities about when and why a bias arises might support theoretical attempts

to micro-found and unify updating biases. Hence, the paper next turns to studying the

mechanisms behind the observed belief patterns. A plausible candidate explanation for

the bias is that people “are bad at doing math” – e.g., that they cannot or do not want to

compute the conditional expectations that are required in the present experiment. On

the other hand, cognitive scientists routinely argue for the importance of mental repre-

sentations for cognition. As discussed in greater detail in Section 4, researchers in the

computational theory of mind partition thinking into (i) mental representations – the

way in which people internally represent the external environment – and (ii) computa-

tions on those representations (e.g., Fodor, 1983; Thagard, 1996; Horst, 2011). Taking

cognitive scientists’ framework as point of departure, I study whether mental repre-

sentations or computational skills generate biased updating in the present context and

which factors make it more or less likely for people to develop a correct representation.

In the first step, I assess whether neglect is mostly driven by a lack of computa-

tional skills, i.e., problems in computing simple conditional expectations. For this pur-

pose, I consider subjects’ responses to an incentivized follow-up question that directly

measures their ability to compute the same conditional expectations as in the baseline

treatment. Here, a large majority of subjects provide the correct response and virtually

all update in the right direction. Thus, subjects’ problems in dealing with selection in

this relatively simple setup are mostly not computational in nature. Rather – sticking

with the terminology from the computational theory of mind – errors seem to arise due

to a wrong mental representation.

How do such mental representations form and in which sense do they depend on

the structure of the environment? To study this question, I investigate the dependence

of the bias on the computational complexity of the environment and the mechanisms

through which complexity shapes beliefs. After all, even abstracting from the context

of selection, little is known about how and why complexity affects belief formation.

Following the spirit of work in cognitive psychology, the basic idea is that high com-
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putational complexity might induce “cognitive busyness” (Gilbert et al., 1988; Sweller,

1988) and hence “distract” people from attending to the selection problem that lurks

in the background of the process. To test this idea, I develop two follow-up treatments.

These treatments vary the overall computational complexity of the environment, while

at the same time fixing an extremely low difficulty of accounting for selection. In par-

ticular, these treatments only differ in their signal space: {70, 70,70, 110,130, 150}
vs. {70, 70,70, 130,130, 130}. In both treatments, whenever a subject receives a sig-

nal above 100 and hence enters the “high signal” group, the selection problem can be

overcome without quantitative reasoning by remembering that a missing signal deter-

ministically implies a signal of 70. At the same time, the treatments differ in how com-

putationally cumbersome it is to compute a full neglect belief. Because these treatments

keep the difficulty of accounting for selection constant, complexity can only matter to

the extent that it draws subjects’ attention away from the selection problem in the first

place. The results document that computational complexity indeed has a strong effect

on stated beliefs. This suggests that complexity matters at least partly because it affects

what people pay attention to and hence mentally represent decision problems.

If complexity indeed operated through attention allocation, it should be possible to

debias subjects even in the more complex environment by directing their focus to the

presence of the selection problem. To test this prediction, I conduct an additional treat-

ment variation. Here, subjects are nudged towards the computer players whose signals

they do not observe due to selection, while not providing any information about how

to solve the selection problem. Even though the required computations are identical

to those in the baseline treatment, this condition greatly reduces the share of neglect

types and induces the majority of subjects to become fully sophisticated.

While this nudge evidence sheds light on the mechanisms underlying biased belief

updating, such direct attention manipulations are rare in practice. Instead, in more nat-

ural contexts, people are likely to receive more indirect “hints” that might prod them

to rethink their updating strategy. A prime example of such indirect nudges is the pres-

ence of disagreement: people are routinely exposed to the beliefs of others whomight or

might not share their own mental representation. To study whether observing disagree-

ment induces subjects to reconsider their cognitive strategy, I ask a new set of subjects

to solve the same belief formation task as those in the baseline treatment. Then, par-

ticipants are provided with the beliefs of two other randomly drawn subjects who had

access to the same information. All of this is publicly announced. Finally, beliefs are

elicited again. The results show that both sophisticated and neglect types overwhelm-

ingly abstain from revising their beliefs in response to their peers’ assessments. Thus,

in contrast to the more specific nudge treatment described above, disagreement as such
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does not shift subjects’ attention to the missing pieces. Follow-up analyses suggest that

this is because the neglect types are relatively confident in their own way of thinking

about the problem.

In sum, (i) people neglect information they do not see on average; (ii) even a cogni-

tively relatively homogeneous (student) subject pool exhibits systematic heterogeneity

in the propensity to neglect; (iii) such neglect is driven by people’s problem representa-

tions; (iv) environmental complexity affects how people represent and approach these

types of problems, because it distracts them from the selection effect; so that (v) people

are indeed capable of accounting for selection once their focus is exogenously steered to-

wards this aspect. These results connect to the recent experimental literature on bound-

edly rational reasoning (Eyster et al., 2015; Bushong and Gagnon-Bartsch, 2016) that

studies the roles of complexity (Abeler and Jäger, 2015; Esponda and Vespa, 2014,

2016a), attention (Enke and Zimmermann, 2015; Taubinsky and Rees-Jones, 2015;

Mormann and Frydman, 2016), choice bracketing and framing (Rabin and Weizsäcker,

2009; Imas, 2016) and fast vs. slow thinking (Kessler et al., 2017).¹ What sets this pa-

per apart from these contributions is the focus on selection problems under a known

data-generating process as well as the detailed study of how complexity shapes beliefs

through its effects on what people pay attention to and how they represent decision

problems. While the presence of complexity is of course a key motivating observation

for research on bounded rationality in general, very little, if any, work has identified a

micro-foundation of why and how complexity affects reasoning.

The paper also connects to recent theoretical contributions in which mental repre-

sentations induce biased beliefs (Gennaioli and Shleifer, 2010; Schwartzstein, 2014;

Gabaix, 2014; Spiegler, 2016; Bohren and Hauser, 2017), or which emphasize the role

of reminders and cues in decision-making (Bordalo et al., 2017). Even though such

models cannot easily account for the evidence in this paper, the paper is also related to

research on cursedness (Eyster and Rabin, 2005; Charness and Levin, 2009; Ivanov

et al., 2010). Interestingly, recent work suggests that cursedness is pronounced in

simultaneous-move environments but largely disappears in sequential contexts (Esponda

and Vespa, 2014; Ngangoue and Weizsäcker, 2015). In contrast, this paper identifies

boundedly rational updating in a purely sequential setup.

The paper proceeds as follows. Section 2 describes the experimental design. Sec-

tion 3 presents the results and Section 4 studies mechanisms. Section 5 concludes.

¹For evidence in selection setups in which people do not know the process that generates their data,
see Esponda and Vespa (2016b) and Jin et al. (2016), or, in more qualitative non-incentivized setups,
Brenner et al. (1996), Schkade et al. (2007), and Koehler and Mercer (2009).
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2 Baseline Experiments

2.1 Experimental Design

Studying belief formation in contexts of selection requires (i) a task that allows fleshing

out people’s cognitive limitations and at the same time rules out affective reasons for

holding certain beliefs, (ii) full control over the data-generating process, (iii) exoge-

nous manipulation of the degree of selection, (iv) a control condition that serves as

a benchmark for updating without selected information, and (v) incentive-compatible

belief elicitation. Most importantly, a clean identification requires subjects’ full know-

ledge of the data-generating process, i.e., a setup in which we know that subjects can

in principle understand the statistical properties of those signals they do not see as a

result of the selection mechanism. The present between-subjects design accommodates

all these features.

The key idea of the design is to construct two sets of signals which result in the same

Bayesian posterior, but only one information structure features a problem of selection.

Subjects were asked to estimate an ex ante unknown state of the world µ and were

paid for accuracy. First, the computer generated µ; to this end, the computer drew 15

times with replacement from the set X = {50,70, 90,110, 130,150}. The average of

these 15 draws then constituted the true state µ. Second, the computer generated six

signals about the state. Let Y denote the set of 15 numbers that determine the state.

The computer generated six signals s1, . . . , s6 by randomly drawing from Y , without

replacement. Thus, ex ante, each signal is independently and uniformly distributed

over the set X .

In the course of the experiment, a subject “interacted” with five computer players

(called players I–V). The experimental task consisted of multiple stages, as summarized

in Table 1. First, after the computer randomly generated the true state and the signals,

a subject as well as each of the five computer players privately observed one of the six

signals. In the second stage, the subject and the computer players each selected into a

group based on the respective signal, which introduces an information-based selection

problem. In the third stage, subjects observed the signals of some of the computer

players, and finally stated a belief over µ in the fourth stage.

Specifically, in the first stage, subjects received a private signal. In the second stage,

they had to decide upon their group membership (blue or red group) based on their

signal. The payoff structure was such that subjects earned higher profits as member of

the blue group if µ < 100 and of the red group provided that µ > 100, i.e., profits

were €12 if the subject opted for the red (blue) group when µ > 100 (µ < 100),

and €2 otherwise. Given this payoff structure, it was rather obvious for subjects which
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Table 1: Overview of the experimental design

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Computer deter-
mines true state
and generates six
signals

Subject and five
computer players
each receive one
private signal

Selection into
blue or red group
based on private
signal

Subject learns sig-
nal of (subset of)
computer players

Belief
elicita-
tion

Notes. Overview of the experimental design.

group to enter, and I show below that subjects indeed almost always entered the red

group if their private signal was larger than 100 and the blue group otherwise. The

five computer players similarly decided on their group membership using a decision

rule that was known to subjects, i.e., these players opted for the blue (red) group if

their private signal was smaller (higher) than 100. After this first stage, the two groups

exhibit strong assortative matching on information, with all high signals being in the

red group, and all low signals being in the blue group.

In the third stage, subjects observed the signals of some of the computer players to

gather additional information about the state, i.e., subjects obtained the private signals

of these computer players. The only difference between the Selected and the Control

treatment consisted of the information subjects received from the computer players. In

the Selected treatment, subjects talked to all computer players in their own group, but

at least with three computers. Thus, for instance, if a subject’s group contained only one

computer player, they obtained the signal of that player and of two randomly chosen

players from the other group. If a subject’s group contained four players, a subject

observed (only) these four.² It was made clear to subjects that whenever they did not

talk to a particular player, it would have to be that this player entered the opposite

group. Thus, subjects could easily infer the number of players in each group. Note that

given the simplified discretized uniform distribution over the signal space, it was rather

straightforward for subjects to infer which types of signals they were missing. This

provides a crucial input into the design, because it ensures that subjects can in principle

understand the statistical properties of the signals they do not see. In particular, being

sophisticated about selection requires subjects to understand that when they are in the

red group, a missing signal was 70, in expectation, while it was 130 when they were

in the blue group. Finally, subjects stated a belief over µ.

In the Control condition, participants received the same signals as subjects in the

Selected treatment, but additionally obtained a coarse version of the signals of the com-

puter players that subjects in the Selected condition did not observe. Specifically, if the

²I conducted a robustness check with a simplified selection rule. In treatment Robustness, subjects
only observed the signals of all computer players in their own group. See Appendix C for details.
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Table 2: Overview of the experimental tasks

True Private Observed Observed Observed Observed Unobs. Unobs. Bayesian Sophisticated Naïve
State signal Signal A Signal B Signal C Signal D Signal E Signal F Belief Belief Belief

92.66 130 110 90 70 – 50 90 96.00 90.00 100.00

106.00 130 130 150 110 – 90 50 104.00 110.00 130.00

112.67 50 70 150 130 – 110 110 104.00 110.00 100.00

85.93 110 130 110 70 – 70 90 97.33 93.33 105.00

98.00 90 70 70 90 90 130 – 96.00 90.00 82.00

95.33 130 90 150 90 – 50 70 100.00 100.00 115.00

107.33 70 90 90 110 – 110 150 101.33 103.33 90.00

Notes. Overview of the belief formation tasks in order of appearance. The categorization into observed and unobserved mes-
sages applies to the case in which subjects follow their private signal, i.e., opt for the red group if their signal was larger
than 100, and for the blue group otherwise. Subjects in the Selected treatment observed only their own signal as well as the
“observed” messages. Subjects in the Control condition additionally had access to a coarse version of the “unobserved” mes-
sages, i.e., if the corresponding signal was less than 100, they saw 70, and if the signal was larger than 100, they saw 130.
See Section 2.2 for a derivation of the sophisticated and naïve belief benchmarks.

signal of these additional computer players was in {50, 70,90}, the respective player

communicated 70 to the subject, while if the signal was in {110, 130,150}, the com-

puter communicated 130. Given that these coarse messages equal the expected signal

conditional on group membership, the informational content of the Selected and the

Control treatments is identical.

Subjects completed seven independent tasks without receiving feedback in between.

All subjects solved the same tasks, summarized in Table 2. For instance, in the first task,

subjects’ private signal was 130, so that the optimal choice in the first decisionwas to opt

for the red group. Here, subjects in the Selected condition would meet three computer

players that obtained signals 110, 90, and 70, i.e., subjects observed the signal of one

player from their own red group and two from the blue group. The remaining two

computer players received private signals of 50 and 90, respectively. While subjects in

the Selected condition did not observe the signals of these players, those in the Control

condition observed coarse versions of these signals, i.e., 70 and 70.

Four features of this experimental environment are worth noting. First, the proce-

dure induced a problem of absence and selection akin to the examples discussed in the

introduction. This selection problem should intuitively be easy to understand, not just

because subjects know the computer player’s decision rules, but also because subjects

actively select into a group themselves. Second, subjects’ knowledge that they would

talk to every computer player in their own group allowed participants to infer which

types of observations they were missing. For example, if a subject was in the blue group

and one computer did not talk to them, they knew that this computer had opted for

the red group. Third, drawing signals from a simplified discretized uniform distribu-

tion ensures that computing the conditional expectation of the missing signals is rather

straightforward and can be done, e.g., by choosing the middle option conditional on
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being above or below 100. Finally, the full data-generating process was exogenous and

known, so that subjects knew how to interpret the computers’ actions.

A comprehensive set of control questions ensured that subjects understood the pro-

cess generating their data. Most importantly, subjects were asked what they knew about

a computer player’s private signal if they were in the red group, but did not observe

the signal of that computer player, i.e., that this computer player must have obtained a

private signal of less than 100 and hence opted for the blue group. Only once subjects

had correctly solved all questionnaire items could they proceed to the main tasks.³ In

the belief formation stage, all beliefs were restricted to be in [0,200] by the computer

program. Appendix F contains the experimental instructions and control questions.⁴

The experiments were conducted at the BonnEconLab of the University of Bonn and

computerized using z-Tree (Fischbacher, 2007). Participants were recruited and invited

using hroot (Bock et al., 2014). 78 student subjects participated in these two treatments

(48 in Selected and 30 in Control) and earned an average of €11.60 including a €4
show-up fee.⁵ After the written instructions were distributed, subjects had 15minutes to

familiarize themselves with the task. Upon completion of the control questions, subjects

entered the first task. Each task consisted of two computer screens. On the first screen,

subjects were informed of their private signal and decided which group to enter. On

the second screen, participants received the computer players’ signals and stated a

point belief. Both decisions were incentivized, in expectation: in total, subjects took 14

decisions (seven onwhich group to enter and seven belief statements), one of whichwas

selected for payment, which constitutes an incentive-compatible mechanism in such

a setup (Azrieli et al., 2015). The probability that a belief was randomly selected for

payment was 80%, while a groupmembership was chosen with probability 20%. Beliefs

were incentivized using a quadratic scoring rule with maximum variable earnings of

€18, i.e., variable earnings in a given task j equalled π j =max{0; 18−0.2×(b j− t j)2},

³The control questions followed a multiple choice format, with 3–4 questions per screen. Thus, trial-
and-error was very cumbersome. Moreover, the BonnEconLab has a control room in which the experi-
menter can monitor the decision screens of all experimental subjects. Thus, whenever a subject appeared
to have problems in answering the control questions, an experimenter approached the subject, clarified
open questions (if any) and excluded the subject from the experiment if they did not appear to un-
derstand the instructions. Also notice that it turns out that one of the control questions was phrased
suboptimally. This question asked subjects which signal a computer player must have gotten “on aver-
age” if that signal induced the computer player to enter the red group (i.e., 130). Here, roughly 25% of
subjects indicated to the experimenter that they did not understand the concept of an “average signal”
given that the question asked for the signal of one particular computer player; nevertheless, all of these
subjects showed a clear understanding that the signal of that computer player must have been larger
than 100. Given that an incentivized follow-up question explicitly investigated subjects’ ability to com-
pute conditional expectations (see Section 4.2), subjects were allowed to continue to the experiment
after the experimenter privately explained how to interpret the phrase “average signal”.

⁴The instructions can also be accessed at https://sites.google.com/site/benjaminenke/.
⁵The unbalanced treatment allocation was determined ex ante, which reflects the fact that the Con-

trol condition merely serves as a “straw man” with very little expected noise.
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where b denotes the belief and t the state. Across tasks, the average financial incentives

to hold sophisticated (relative to fully naïve) beliefs were roughly €12. Payments for

the group entrance decision were €12 if the subject opted for the red (blue) group

when µ > 100 (µ < 100), and €2 otherwise.

2.2 Baseline Hypothesis

Given true state µ=
∑15

k=1 mk/15, for mk ∈ {50, 70,90, 110,130, 150} with probability

1/6 each, the signals si = mk for some k and i ∈ {1, . . . , 6} are unbiased. Let N denote

the number of signals a subject actually sees, i.e., the number of “communication” part-

ners. Denote by ga the group membership of computer player a, i.e., ga ∈ {red ,blue}.
In the present setup, E(si | ga = red) = 130 and E(si | ga = blue) = 70. Given some

signals, a Bayesian would compute the mean posterior belief bB as

bB = E[µ] =

∑N
v=1 sv +
∑6

l=N+1 E[sl | gl] + E[m]× 9

15

where sv denotes an observed signal and sl an unobserved one. The second term

in the numerator denotes the expectation of a signal conditional on the signal recip-

ient entering a certain group. The third term in the numerator reflects the base rate

E[m] = 100. However, starting with Grether (1980), a long stream of research has

shown that people tend to neglect the base rate. I thus define an alternative “sophisti-

cated” benchmark (in the sense of absence of selection neglect) bR as

bR =

∑N
v=1 sv +
∑6

l=N+1 E[sl | gl]

6
. (1)

That is, the “sophisticated” benchmark ignores the base rate, but takes into account

selection. This normalization only serves to illustrate the distribution of individual-level

neglect: without assuming base rate neglect, any estimator for the naïveté parameter

would be severely biased if people actually neglect the base rate. The assumption of

full base rate neglect will be corroborated below using data from the Control treat-

ment: here, people overwhelmingly state beliefs that reflect full base rate neglect, but

are sophisticated otherwise, see footnote 8 and Appendix B.1. Still, the assumption of

full base rate neglect is only used to identify naïveté parameters, while all treatment

comparisons are conducted on the raw data. Below, I report upon a robustness treat-

ment in which base rate neglect does not bias the estimates of selection neglect.

Now imagine that people neglect selection, so that they merely base their beliefs

on “what they see”. Let χ ∈ [0,1] parameterize the degree of naïveté such that χ = 1

implies full neglect. Define a neglect posterior bSN as a weighted average of bR and a
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fully naïve belief bN , which consists of averaging the visible signals:

bSN = (1−χ)bR +χ bN = (1−χ)bR +χ

∑N
i=1 sv

N

= bR +χ
6− N

6
(s̄v − s̄l) , (2)

where s̄v ≡ 1/N
∑N

v=1 sv is the average visible signal and s̄l ≡ 1/(6−N−1)
∑6

i=N+1 E(sl |gl)
the average expected “non-visible” signal. That is, the neglect belief bSN consists of the

sophisticated belief plus an intuitive distortion term that depends on χ.

Hypothesis. Assuming that χ > 0 (and N < 6), subjects’ beliefs in the Selected condition

are too high relative to the Control condition if the average of the visible signals is higher

than the average expected non-visible signal, and vice versa.

3 Results

3.1 Baseline Result

Result 1. Beliefs significantly differ across treatments in the direction predicted by neglect-

ing selection. Thus, beliefs in the Selected condition exhibit irrational path-dependence.

Table 3 presents an overview of the results in each of the seven independent belief

formation tasks. For ease of comparison, I provide the benchmarks of full neglect and

sophisticated beliefs, respectively.⁶ Reassuringly, beliefs in the Control condition follow

the sophisticated prediction very closely, suggesting that the experimental setup was

not systematically misconstrued by subjects: in the absence of selected information,

people state sophisticated beliefs (abstracting from base rate neglect). In the Selected

treatment, however, median beliefs are always distorted away from the sophisticated

benchmark towards the full neglect belief. In all seven tasks do beliefs significantly

differ between treatments at the 5% level (Wilcoxon ranksum test).⁷

To grasp the most basic implication of this updating bias, compare the second and

seventh column of Table 3: whenever subjects’ private signal is high (s > 100), the

belief bias is positive. Conversely, when the private signal is low, the belief bias turns

⁶For completeness, note that, across tasks and treatments, virtually all subjects always enter the
group that corresponds to their private signal realization. In total, in only 15 out of 546 group choice
decisions did a subject enter the “wrong” group. In what follows, I exclude the beliefs from these par-
ticular subject-task combinations. All results are robust to including these observations or to excluding
subjects that entered the wrong group at least once.

⁷Appendix B.3 visualizes the full distribution of beliefs in each task.
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Table 3: Overview of beliefs across tasks

(1) (2) (3) (4) (5) (6) (7) (8)
True Private Sophisticated Naïve Median Belief Median Belief Median p-value
State Signal Belief Belief Control Treatment Selected Treatment belief bias (Ranksum test)

92.66 High 90.00 100.00 90.00 100.00 10.00 0.0091

106.00 High 110.00 130.00 110.00 128.00 18.00 0.0001

112.67 Low 110.00 100.00 110.00 108.00 -2.00 0.0333

85.93 High 93.33 105.00 93.15 105.00 11.85 0.0001

98.00 Low 90.00 82.00 90.00 85.00 -5.00 0.0409

95.33 High 100.00 115.00 100.00 107.50 7.50 0.0001

107.33 Low 103.33 90.00 103.00 91.50 -11.50 0.0178

Notes. Overview of the estimation tasks in order of appearance. See Table 2 for details on the signals in each task as well
as the computation of the sophisticated and the naïve belief benchmarks. High (low) private signals are defined as signals
above (below) 100. The p-value refers to a Wilcoxon ranksum test between beliefs in Selected and Control.

out negative. Thus, in essence, neglecting information-based selection effects implies

a form of irrational path-dependence: given a high prior belief (private signal), people

select into an environment which on average reinforces their prior views, if selection

is not taken into account. Thus, beliefs in the red and blue group end up being too

extreme (on average), akin to common notions of belief polarization across groups.

In what follows, I will frequently work with a measure of subjects’ beliefs that is

independent of the specific updating task. To this end, I use equation 2 to compute the

naïveté implied in each belief of subject i in belief formation task j:

χ̂
j
i =

6(b j
i − b j

R)
(6− N) (s̄v − s̄l)

. (3)

Using this procedure, beliefs can be directly interpreted as reflecting sophisticated

(χ = 0), fully naïve (χ = 1), or intermediate values.⁸ Occasionally, I also work with a

subject-level estimator of χ by computing the median naïveté across these seven values,

i.e., χ̂i = med j(χ̂
j
i ). The OLS regressions reported in columns (1) and (2) of Table 4

then formally confirm that the full set of seven beliefs per subjects, expressed in units of

χ, differs across treatments (the standard errors are clustered at the subject level). The

large bias implies significantly lower earnings of subjects in the Selected condition. The

⁸ Recall that the precise identification of χ (though not the treatment comparison between Selected
and Control) rests on the assumption of full base rate neglect. To justify this assumption, Appendix B.1
presents histograms of the naïveté χ implied in beliefs in treatment Control, separately computed with
and without the assumption of base rate neglect. The figures show that – if full base rate neglect is
assumed – the vast majority of beliefs reflect exactly χ = 0. In contrast, when no base rate neglect is
assumed, χ is extremely noisy and does not follow a clear pattern. In fact, without the assumption of
full base rate neglect, not a single belief in Control reflects χ = 0 when the rational belief does not equal
the base rate. This set of results is to be understood as saying that all subjects in the Control treatment
simply average the signals they observe, and do not take into account the base rate. Given this pattern,
it seems very plausible to also assume full base rate neglect in the Selected condition.
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expected profit from all seven belief formation tasks (i.e., the average hypothetical profit

from each belief) is €5.00 in Selected and €10.50 in Control (p < 0.0001, Wilcoxon

ranksum test).⁹ For comparison, the expected profit from being fully sophisticated in

all tasks is €12.70.

3.2 Precise Belief Patterns and Correlates of Neglect

To develop a deeper understanding of subjects’ precise belief patterns, I examine the

distribution of estimated naïveté parameters χ. The left panel of Figure 1 plots the

distribution of median naïveté parameters in Selected, and contrasts it with beliefs in

the Control condition, where each subject is one observation. Visual inspection clearly

shows that beliefs in the Selected condition exhibit a strongly bimodal distribution.

While roughly 40% of participants are approximately sophisticated (χ = 0), the ma-

jority fully neglects the selection problem. To show that the strong bimodality of types

is not an artifact of the aggregation procedure of the seven beliefs per subject into one

naïveté parameter, the right panel of Figure 1 depicts the distribution of the implied

naïveté in all separate beliefs, i.e., seven beliefs per subject. That is, the right panel

plots the raw data, translated into units of naïveté, without any aggregation, rounding,

or other reasons to expect beliefs to reflect one of the extreme predictions of χ = 0 or

χ = 1. Nevertheless, the data exhibit two large spikes at exactly zero and one, i.e., the

fully sophisticated and fully naïve benchmark. For example, more than 50% of the be-

liefs of all subjects with median χi > 0.5 lie within a very small interval around the fully

naïve belief, 0.95≤ χ j
i ≤ 1.05. In addition, it is conceivable that this number would be

even higher if we took into account that many of the beliefs close to one might reflect

the same cognitive strategy plus decision noise.¹⁰

These results are noteworthy because experimental beliefs data are typically quite

noisy, due to, e.g., random computational errors or typing mistakes. But here, a large

fraction of all beliefs are right at one of the extreme benchmark predictions, which is

arguably inconsistent with quick, lazy, and intuitive thinking. This finding is also sur-

prising in that it is sharply at odds with an ex ante plausible account in which people

neglect selection problems on average, yet heuristically (partially) adjust from the fully

⁹Actual profits, which are partly based on group membership and include the show-up fee, are also
significantly different from each other (€13.70 vs. €10.10, p = 0.0628).

¹⁰The Appendix presents two additional – conceptually analogous – versions of the histogram in the
right panel of Figure 1 by computing χ in two different ways. First, the construction underlying Figure 5
in Appendix B.1 does not assume base rate neglect. In such a framework, the implied χ are extremely
noisy and very often outside the meaningful range, hence arguably providing support for the assumption
of full base rate neglect. Second, Appendix B.2 describes an alternative updating rule in which people
infer a signal of 100 from computer players whose signals they do not see. The evidence suggests that
very few, if any, subjects followed such a rule.
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Figure 1: Distribution of naïveté in the Selected and the Control treatment. The left panel plots kernel
density estimates of the median naïveté of each individual in both treatments, while the right panel
illustrates the distribution of naïveté implied in all beliefs (7 per subject) in the Selected treatment. To
ease readability, the right panel excludes observations outside χ ∈ [−1, 2] (30 out of 336 obs.).

naïve belief towards the sophisticated benchmark. Below, I will return to the observa-

tion of the pronounced bimodality in subjects’ beliefs to build a case for the importance

of (discrete) mental representations in dealing with selection problems.

Next, I examine basic correlates of biased updatingwithin treatment Selected. Columns

(3)–(4) of Table 4 show that participants with better high school grades (a common

proxy for cognitive ability) are significantly less likely to commit neglect (Benjamin et

al., 2013). Columns (5) and (6) show that neglecting selection is significantly corre-

lated with correlation neglect, measured as in Enke and Zimmermann (2015).¹¹ When

both high school grades and correlation neglect are inserted into the regression, the co-

efficient on subjects’ high school grades drops in size and ceases to be significant. While

these results need to be interpreted with care, they may suggest that correlation and

selection neglect share common foundations that are more specific than low cognitive

ability. In sum, these results suggest that people’s tendency to neglect certain aspects

of updating problems might be a somewhat stable trait that is linked to cognitive skills.

Finally, I study the relationship between neglect and response times, which are

often advocated for as proxy for cognitive effort in experiments (Rubinstein, 2007,

2016). Indeed, a long literature in cognitive psychology has argued that updating biases

are frequently the product of intuitive, quick, and mathematically effortless responses.

Such thinking could either result from the intuitive reign of “system 1” in the sense of

Stanovich andWest (2000), Frederick (2005), and Kahneman (2003, 2011), or it could

be driven by a conscious decision to economize on scarce cognitive resources, perhaps

akin to costs of thinking models in economics (Gabaix, 2014; Caplin et al., 2006; Caplin

¹¹32 out of 48 subjects in Selected agreed to take part in a follow-up study in which they solved five
of the tasks used by Enke and Zimmermann (2015) to establish correlation neglect, see Appendix B.6.
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and Dean, 2015) or as in the “cognitive miser” or “motivated tactician” metaphors of

cognitive psychology (Fiske and Taylor, 2013).

In the data, the average response time across tasks and subjects in treatment Se-

lected is 56 seconds. Columns (7)–(8) of Table 4 investigate the relationship between

subjects’ naïveté χ (as implied in each belief, see eq. 2) and the corresponding response

time (in minutes). The results show that higher response times are significantly asso-

ciated with less neglect. At the same time, the quantitative magnitude of this relation-

ship is remarkably small: interpreted causally, the point estimate implies that response

times would have to increase by four minutes per task to move a full neglect subject

to fully sophisticated beliefs, which corresponds to roughly six standard deviations in

the sample. Thus, it appears as if the relationship between response times and neglect

is quantitatively much too small to be able to explain neglect purely as the result of

low response times (cognitive effort).¹² Instead, it seems possible that the difference

in response times between sophisticated and neglect types reflects that these subjects

have different solution strategies to begin with: sophisticates will need to work longer

on the task because backing out the conditional expectation of the missing signals and

computing the average of six numbers is more cumbersome than just computing the

average of four numbers.¹³

3.3 Robustness Treatments

I conducted two robustness treatments to examine the extent to which the baseline

result depends on particular features of the experimental design. Both treatments were

simple variations of treatment Selected. First, in treatment Robustness, subjects went

through the same procedures as in Selected, except that they only observed the signals

of all computer players from their own group. Thus, in contrast to Selected, subjects

never observed the signal of a computer player who did not enter their own group.

Second, in treatment Base Rate, the procedures were again identical to those in Se-

lected, except that the true state was not determined by 15 random draws from the set

X , but rather by only six draws. Given that a subjected interacted with five comput-

¹²Figure 14 in Appendix B.7 plots a histogram of the naïveté implied in subjects’ beliefs, partitioned
by whether the average response time is above or below 69 seconds, the median response time of sophis-
ticated subjects (χ ≤ 0.5).

¹³ If subjects’ responses reflected careless answers, a perhaps natural conjecture is that such beliefs
exhibit low within-subject consistency across tasks because they induce more noise (Choi et al., 2014).
To evaluate this, I construct a measure of how often subjects state beliefs that are within a relatively
small interval around some χ. Appendix B.4 discusses the construction of this measure in detail and
shows that, overall, subjects exhibit an encouragingly high degree of consistency. As illustrated by the
regression in columns (9) of Table 4, the index of consistency is virtually uncorrelated with subjects’
updating type χ. This suggests that the neglect types do not state beliefs that wildly fluctuate across
tasks or are otherwise more noisy than those of the sophisticates.
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ers, this procedure implies that the number of signals equals the number of balls that

determine the true state. Thus, in contrast to treatment Selected, there was no scope

for selecting a base rate: for all balls that determined the true state, subjects either

observed the ball or could in principle back out the conditional expectation from the

group membership of the computer players. Thus, the “sophisticated” benchmark belief

corresponds to Bayesianism in this treatment.

The results of both of these treatments are very similar to those in Selected, see

Appendix C for details. In particular, the data again exhibit two pronounced spikes at

χ = 0 and χ = 1, which shows that the bimodal type distribution hinges neither on

assuming full base rate neglect, nor on the particular selection rule.

4 Mechanisms: Representation and Computation

4.1 Motivating Framework from Cognitive Science

Taking stock, we have seen that the neglect types consistently state beliefs that reflect

exactly full neglect and spend almost as long on the experimental tasks as the sophisti-

cated types. These patterns are suggestive that people do engage in specific and effort-

ful mathematical calculations – just fundamentally wrong ones. The remainder of the

paper is devoted to understanding why this is.

Casual accounts of cognitive biases frequently involve the notion that “people are

notoriously bad at math”. However, for the purpose of developing a set of empirical

regularities that might provide inputs into theorists’ attempts to micro-found and unify

updating biases, the notion that “people are bad at math” is likely to be too vague. The

paper thus proceeds by developing and experimentally testing a qualitative framework

of cognition in selection contexts.

According to the dominant approach to conceptualizing cognition in cognitive sci-

ence, in particular in the computational theory of mind, thinking can be partitioned

into (i) mental representations and (ii) computations on those representations (Fodor,

1983; Thagard, 1996; Horst, 2011). While researchers in cognitive science do not offer

a precise mathematical theory of these concepts, mental representations correspond to

people’s internal representations of the external environment, e.g., the way in which

they subjectively perceive a data-generating processes, and what they pay attention

to. Computations, on the other hand, refer to how the brain processes information

within the aforementioned representational structures, i.e., computations are said to

take representations as inputs or bases. In economics terminology, the distinction be-

tween representations and computations arguably comes close to the idea that people

hold (potentially misspecified) subjective models of reality, and attempt to optimize
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conditional on these subjective models.

In the context of the present paper, people might fail at accounting for what they do

not see either (i) because they mentally represent the problem in a wrong way and do

not even pay attention to the missing pieces, or (ii) because they correctly represent the

problem, but fail at optimizing appropriately, i.e., at mathematically backing out the

missing signals. The pronounced bimodality in subjects’ types strongly suggests that

the processes of developing a correct representation and computationally backing out

the missing signals can be thought of as binary.

4.2 Computational Skills

To investigate whether people possess the abstract skills that are necessary to compute

rational beliefs conditional on being aware of the missing pieces, treatment Selected

contained an incentivized follow-up question. This question allows to assess people’s

ability to compute simple conditional expectations:

In the course of this experiment, in total, you did not communicate with five

computer players because you were part of the blue group, while these com-

puter players opted for the red group. Based on this information, please es-

timate which signals these players in the red group have gotten, on average.

You will receive an additional€2 if your guess is exactly right, 50 cents if your

estimate is off by at most five, and nothing otherwise.

46 out of 48 subjects provided a response above 100, which documents that virtually

all subjects understood the setup and were capable of drawing qualitatively appropriate

inferences from the behavior of the computer players. In addition, two thirds of all sub-

jects provided exactly the correct conditional expectation of 130. But while participants

do rather well in computing conditional expectations, their beliefs oftentimes exhibit

full neglect in the actual experimental tasks, see Appendix B.5 for details. That is, even

among those subjects that computed exactly the correct conditional expectations, many

exhibit χ = 1.

These patterns show that even the neglect types possess the computational skills to

update correctly, at least directionally.¹⁴ This result, in combination with the bimodality

in subjects’ types points to an important role of binary mental representations: after all,

if subjects had the correct representation, why would they not at least partially adjust

from the full neglect belief if they have the computational skills to do so?

¹⁴Of course, these findings should not be understood as suggesting that people generally do not fail
at computing conditional expectations, in particular if the setup is more complex. However, the results
do suggest that people already approach selection problems with a wrong representation of the problem
in the first place, even if the underlying signal distribution is relatively simple.
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4.3 Representations and Complexity

Hypothesis. If people’s neglect of selection problems is generated through an incor-

rect mental representation, then that naturally raises the question of which environmen-

tal features make it more or less likely for people to develop the correct representation

and hence state accurate beliefs. A prime candidate for a feature that might plausibly

affect how people approach updating problems is environmental complexity. After all,

different aspects of complexity have been shown to affect reasoning in a number of con-

texts (Charness and Levin, 2009; Enke and Zimmermann, 2015; Esponda and Vespa,

2016a, e.g.,), though it has not always been clear why complexity matters.

This paper takes a somewhat different approach than prior work by exogenously

varying a particular type of complexity in a way that is clear about how and why com-

plexity should matter. Specifically, consistent with psychological research, I investigate

the hypothesis that high computational complexity might induce “cognitive busyness”

(Gilbert et al., 1988; Sweller, 1988) and hence distract people from attending to the se-

lection problem that lurks in the background of data-generating process. That is, I study

whether increasing the computational complexity of the updating problemmakes it less

likely for people to attend to and correct for the selection problem, but holding fixed

the difficulty of accounting for selection itself. This thought experiment has the attractive

feature that it narrows down the pathways through which complexity can affect belief

updating: if the difficulty of correcting for selection is not changed, then differences in

belief updating can plausibly be attributed to an effect of computational complexity on

attention allocation.

Design. To test this mental comparative statics exercise, I introduce treatments Inter-

mediate and Simple. These experimental conditions follow the same procedures as those

in Selected, except for one variation. Recall that in Selected, the true state (as well as

the signals) were determined by random draws from the set {50,70, 90,110, 130,150}.
In Intermediate, this set is replaced by {70,70, 70,110, 130,150}, and in Simple by

{70,70, 70,130, 130,130}.¹⁵ Notice that whenever subjects’ private signal is above 100,

so that they enter the red group, the problem of backing out the missing observations

from the blue group is both utterly simple and identical across the Intermediate and

Simple treatments: subjects only need to remember that a computer player being in the

blue group deterministically implies a signal of 70. That is, in both treatments, people’s

potential problems in computing conditional expectations cannot drive any results.

¹⁵To implement these changes, the signal draws from Selectedwere simply replaced by the appropriate
values, e.g., 50 became 70. Thus, subjects in Intermediate and Simple essentially solved the same tasks
as those in Selected.
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At the same time, treatment Intermediate is computationally more complex than

Simple because the process of computing a (naïve) posterior from the visible signals

involves averaging various different values, as opposed to mostly 130’s. That is, just

as required by the research hypothesis, these two treatments leave the difficulty of ac-

counting for selection constant, but vary the extent to which the environment in general

consumes mental resources, in particular the extent to which people may be distracted by

an aspect of the problem that is unrelated to accounting for selection.¹⁶ In total, 89 subjects

participated in Intermediate and Simple, which were randomized within session.

To verify that computing a naïve belief is indeed perceived to be more complex in

Intermediate than in Simple, I conducted a survey on Amazon Turk (N = 209, described

in more detail in Appendix E. In this survey, I presented each participant with four pairs

of math tasks that correspond to averaging the visible signals across the two treatments.

I then asked participants to assess which task – if any – is harder. 6% of participants

found the tasks in Simple harder, 73% those in Intermediate, and 21% found them

equally difficult.

Results. In analyzing the data, I start by restricting attention to those experimental

tasks in which subjects’ private signal satisfies s > 100 so that the difficulty of backing

out the missing signals is indeed identical across Intermediate and Simple. Figure 2 de-

picts the results. The left panel visualizes the distribution of implied naïveté in subjects’

beliefs in Intermediate, and the right panel shows the analogous patterns for Simple.

The histograms suggest a stark difference: in Simple, subjects are still biased on av-

erage (χ̄ = 0.36, p < 0.01), but the frequency of errors is much smaller compared

to treatment Intermediate, even though the operation of accounting for selection is the

same (and utterly simple, i.e., does not require any quantitative reasoning). To formally

confirm this result, columns (1) and (2) of Table 5 present the results of OLS estima-

tions in which I regress the naïveté implied in subjects’ beliefs (only in those tasks in

which s > 100) on a treatment dummy, with the standard errors again clustered at the

subject level. The coefficient on the dummy is large and statistically highly significant

in both unconditional and conditional regressions.

Recall that the treatment comparison between Intermediate and Simple rests on

the idea that the difficulty of backing out missing observations is identical as long as

s > 100. A similar argument can be constructed for the case of s < 100. Here, sub-

jects in both Intermediate and Selected had to back out missing signals from the set

¹⁶Note that while the informational content of these two treatments is not identical, the differences
are very small: a visible signal of 110 or 150 in Intermediate would turn into a 130 in Simple. In any case,
backing out the absent observations is literally identical across conditions. Thus, by expressing all beliefs
in terms of units of naïveté, we can evaluate the hypothesis that subjects in Simple will attend more to
the absent observations and hence commit less neglect.
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Figure 2: Distribution of naïveté in the Intermediate and the Simple treatments. The left panel plots the
distribution of naïveté implied in beliefs in the Intermediate treatment, while the right panel illustrates
the distribution of naïveté implied in beliefs in the Simple treatment. The sample is restricted to experi-
mental tasks in which subjects’ private signal satisfies s > 100. To ease readability, both panels exclude
observations outside χ ∈ [−1, 2] (31 out of 356 obs.).

{110,130, 150}, yet the difficulty of computing a fully naïve belief varies across these

two conditions because subjects in Intermediate mostly had to process 70’s as opposed

to {50, 70,90}. Accordingly, the research hypothesis would prescribe that subjects in

Selected are more biased. Columns (3) and (4) of Table 5 report corresponding OLS

regressions. As hypothesized, the point estimates are positive; at the same time, the co-

efficients are either only marginally significant or marginally not significant. A potential

reason for the slight discrepancy between the results for the comparison Intermediate–

Selected relative to Intermediate–Simple is that the mathematical steps of accounting for

selection are harder in the first case, so that the data are potentially noisier.

In any case, columns (5) and (6) present a pooled analysis, in which I combine the

observations from columns (1)–(4). Here, people exhibit significantly less neglect in

the less complex tasks compared to the more complex ones, where again complexity is

solely defined through the “distraction” of more cumbersome computations.¹⁷

Result 2. Higher computational complexity leads to more neglect, holding fixed an ex-

tremely simple mental operation of accounting for selection.

Of course, this result should not be interpreted as suggesting that the computa-

tional complexity of computing naïve beliefs is the only aspect of complexity that affects

people’s problem-solving approach. Rather, it should be viewed as a proof of concept:

varying problem complexity affects what people pay attention to.

¹⁷More precisely, in line with the specifications in columns (1)–(4), the complexity dummy assumes
a value equal to zero if an observation is (i) from treatment Simple and s > 100, or (ii) from Intermediate
and s < 100. It equals 1 if an observation is (i) from Intermediate and s > 100, or (ii) from Selected and
s < 100.
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4.4 Attention: Nudge Evidence

Hypothesis. The aforementioned findings suggest that complexity affects reasoning

in selection contexts through its effect on attention allocation (distraction). If this inter-

pretation was correct, it should be possible to debias subjects even in the more complex

environment by shifting their focus to the selection problem. This section seeks to pro-

vide such evidence.

Design. Treatment variation Salience is identical to treatment Selected, but addition-

ally provided a hint both at the end of the instructions and on subjects’ decision screens:¹⁸

HINT about the solution: Also think about the computer players whom you do

not communicate with!

This hint alerts subjects to reflect upon the missing computer players and the infor-

mation they have gotten, but does not instruct them what to do about these missing

signals. 48 subjects participated in this treatment and earned €11.60 on average.

Results. The left panel of Figure 3 provides kernel density plots of subjects’ median

naïveté in this Salience treatment compared to the two baseline treatments, while the

right panel plots the distribution of naïveté implied in all individual-level beliefs. As

visual inspection suggests, this treatment had a large effect on subjects’ beliefs relative

to the Selected condition and reduced the fraction of neglect types by 60%. Notably,

in this condition, most subjects develop beliefs that exactly reflect χ = 0. To formally

confirm the positive effect of this treatment variation relative to treatment Selected,

columns (5) and (6) of Table 5 present the results of OLS regressions in which I regress

the full set of seven beliefs per subject (expressed in units of naïveté χ) on a treatment

dummy. The coefficient on the dummy suggests that increasing the salience of missing

observations reduced the implied naïveté by about 0.3, relative to a level of about 0.5

in Selected.

Result 3. Nudging subjects’ attention to the missing pieces of information leads to a de-

crease in the fraction of neglect types by about two thirds.

¹⁸The quote provided in the main text applies to subjects’ decision screen. To prevent confusion, the
hint at the end of the instructions reads: “HINT about the solution: When you estimate the number X,
always also think about the computer players whom you do not communicate with!”
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Figure 3: Distribution of naïveté in the Selected, Control, and Salience treatments. The left panel plots
kernel density estimates of the median naïveté of each individual in all three treatments, while the right
panel illustrates the distribution of naïveté implied in all individual-level beliefs in the Salience treatment.
To ease readability, the right panel excludes observations outside χ ∈ [−1, 2] (30 out of 336 obs.).

4.5 Disagreement

Hypothesis. While treatment Salience documented that shifting subjects’ attention

can have large effects on their beliefs, such direct attention manipulations are rare in

practice. Instead, more natural contexts are likely to provide indirect hints that might

induce people to reconsider their updating rule. A prime example is the presence of

disagreement. After all, people are often exposed to the beliefs of others, and this may

induce people to question their original strategy, and notice the selection problem.

Design. In treatment Disagreement, a new set of subjects solved the seven belief for-

mation tasks from the Selected treatment reported above. The new treatment consisted

of two parts, as illustrated by Table 6. In part one, subjects solved the first three be-

lief formation tasks (without feedback). This allows me to compute an out-of-sample

measure of subjects’ type χ.

In part two, subjects solved the remaining four tasks. Here, similarly to treatment

Selected, subjects received a private signal and were allocated to the red or blue group

depending on whether their signal was above or below 100.¹⁹ Then, subjects stated a

belief. Afterwards, they were shown the beliefs of two other randomly drawn subjects

(“neighbors”) from the same session.²⁰ Importantly, all subjects not only solved the

same tasks, they also received the same private signal and observed the signals of the

same computer players. The written instructions placed heavy emphasis on the presence

of identical information and a verbal summary was read out aloud to induce common

¹⁹In these four tasks, subjects did not decide on their group membership. Rather, the computer allo-
cated them into the red (blue) group when their private signal was higher (lower) than 100. This was
done to ensure that subjects indeed had identical information.

²⁰This random matching was not constant across tasks.
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Table 6: Basic timeline of treatment Disagreement

Part 1 Part 2

Stage 0 – 4 Stage 0 – 3 Stage 4 Stage 5 Stage 6

As in Selected
treatment

As in Selected, except that sub-
jects do not choose their group
membership, but rather get al-
located depending on whether
s > 100

Belief
elicita-
tion

Observe be-
liefs of two
neighbors

Belief
elicita-
tion

Notes. Timeline of the treatments involving disagreement. In the first part, subjects completed three
tasks from the Selected treatment. In the second part, they completed four additional tasks. Here,
subjects again observed a private signal and were then allocated into the red and blue group accord-
ing to their signal. Then, they observed the signals of a subset of the computer players as in Selected.
After subjects stated a belief, they were shown the beliefs of two other subjects and then again stated
a belief. Subjects did not receive any feedback between the different experimental tasks, except for
observing the beliefs of their neighbors.

knowledge. After subjects observed the beliefs of their neighbors, they were asked to

state a second belief.²¹ Subjects did not receive feedback between the different tasks,

except for observing the beliefs of their neighbors. Subjects’ decisions were financially

incentivized such that either part one or part two of the experiment was drawn for

payout with probability 50% each; conditional on either part being drawn, one of the

respective decisions was implemented, just like in the baseline treatments.

Results. For the purposes of the empirical analysis, I again normalize the data across

tasks by computing the naïveté χ that is implied by each belief and then pool the data

across tasks and subjects. First note that the structure of the belief distribution in this

treatment is again bimodal with subjects being either fully naïve or sophisticated about

the selection problem, see Appendix D.

I investigate how subjects revised their beliefs as a function of their updating type.

After all, sophisticated and neglect types may differ in how they respond to disagree-

ment. To construct a measure of how much subjects revise their beliefs, I compute the

difference between the beliefs subjects stated before and after observing the beliefs of

their neighbors, expressed as percentage of the pre-communication disagreement (mea-

sured as simple difference between the subject’s pre-communication belief and the two

neighbors’ average pre-communication belief):

Belief revision of subject i=
χ2

i −χ
1
i

χ̄1
−i −χ

1
i

× 100,

²¹The experimental procedures paid special attention to preserving anonymity between subjects to
eliminate confounding effects of image concerns as arising from people feeling uncomfortable with stat-
ing and revising their beliefs in public.
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Figure 4: Magnitude of belief revisions. Each histogram depicts the belief revision between the first and
second belief (expressed as percent of the difference between the first belief and the average belief of
the two neighbors) conditional on the type of the subject (left / right panel). A subject is classified
as sophisticated if the out-of-sample median naïveté parameter from the first part of the experiment
satisfies χ ≤ 0.5 and conversely for naïfs. Appendix D.4 shows that very similar patterns hold if I classify
subject-task observations based on both the out-of-sample naïveté parameter and the naïveté implied by
the first belief in a given task. The figure includes all observations for which the first belief of a subject
does not equal the average belief of the two neighbors. Adjustments > 100% and < 0% are excluded to
ease readability (18 out of 374 obs.).

where χ̄1
−i denotes the average belief (naïveté) of i’s two neighbors in their first belief

statements. Thus, the belief revision measure quantifies by how much subjects altered

their belief, relative to how much they could have changed their beliefs given the neigh-

bors’ reports and their own first belief. Note that this belief revision measure takes into

account that subjects might be confronted with zero, one, or two beliefs that substan-

tially differ from their own assessment of the evidence.

Figure 4 presents histograms of subjects’ belief revisions as a consequence of the

neighbors’ reports. To make matters interesting, I restrict attention to cases in which a

subject’s first belief does not equal the average belief of the two neighbors. To visualize

the results, I partition subjects into sophisticates and naïfs according to whether their

out-of-sample median naïveté parameter from the first part of the experiment satisfies

χ ≤ 0.5.²² The figure reveals that participants largely abstain from adjusting their

²²The cutoff of χ = 0.5 is arbitrary except that it denotes the midpoint of the naïveté interval. Ap-
pendix D.4 shows that very similar patterns hold if I classify subject-task observations based on both the
out-of-sample naïveté parameter and the naïveté implied by the first belief in a given task.
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beliefs in response to the neighbors’ assessments. While the patterns are slightly weaker

for the neglect types, in both groups of subjects a large majority does not adjust their

belief at all, i.e., subjects state exactly the same belief in the second question as in the

first one. In addition, even those subjects that do adjust do so in a quantitatively small

fashion.²³ Figure 20 in Appendix C shows that very similar patterns hold if I restrict

attention to the subsample in which there is a large discrepancy between a subject’s first

belief and the average belief of the two neighbors. Appendix D.3 concludes this analysis

by presenting an econometric analysis that facilitates an estimation of the weight that

subjects implicitly assign to their own solution strategy relative to that of other subjects.

The results show that the neglect types weight their own updating rule 6.7 times higher

than that of another randomly drawn subject.

Result 4. Observing disagreement by itself does not induce the neglect types to reconsider

their problem representation.

An interesting question is why the more direct nudge treatment succeeded in draw-

ing subjects’ attention to the selection issue, but disagreement as such did not. A plau-

sible explanation (or interpretation) is that the neglect types appear to be relatively

confident in their erroneous updating rule: when they observe others hold different be-

liefs, this does not immediately induce them to reconsider their solution strategy, which

might in turn lead to noticing the selection problem. Appendix D.5 delves further into

the question of how confident subjects are by discussing additional data on subjects’

self-reported confidence levels. These data provide additional suggestive evidence that

the neglect types are indeed almost as confident in their problem solving approach

as the sophisticated types, hence bolstering the above explanation for why the more

indirect “hint” of observing disagreement does not debias the neglect types.

5 Conclusion

This paper has provided an analysis of how people form beliefs when they need to learn

from something they do not see. The results have shown that people have a strong

average propensity to neglect the resulting selection problem, and that this average

pattern masks strong heterogeneity: those types that neglect selection compute exactly

the “correct” solution, conditional on fully ignoring what they do not see. This pattern

suggests that people employ a specific strategy that they implement through effortful

calculations. Folllow-up treatments provide evidence that this erroneous strategy does

not reflect poor computational skills. Rather, people appear to develop a wrong mental

²³Appendix D.6 investigates learning over time.
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representation of the problem, but then optimize reasonably well within this represen-

tation. The paper has provided evidence that these representations are endogenous

to the environment: in particular, the computational complexity of the environment

affects how people mentally represent problems and what they pay attention to.

The findings in this papermay have an interesting subtle relationship to work on nar-

row bracketing (Gneezy and Potters, 1997; Rabin and Weizsäcker, 2009; Imas, 2016).

In the present experiments, people appear to have a mental problem representation

that is “too narrow” in the sense that it includes only those information pieces that are

directly in front of them. While we do not have a formal theory of such behavior, it

may be linked to behavior in contexts in which, say, prior decisions, are not taken into

account. It would hence be interesting to explore whether the endogeneity of represen-

tations that is at the core of this paper extends to other choice contexts.
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A Treatment Overview

Table 7: Treatment overview

Treatment # of subjects Session length (mins) Ave earnings (euros)

Selected 48 50 10.10

Control 30 50 13.70

Robustness 45 50 11.20

Base Rate 46 50 10.90

Salience 48 50 11.60

Intermediate 47 50 10.70

Simple 42 50 12.80

Disagreement 96 70 11.60

B Details and Robustness Checks for Baseline Treatments

B.1 The Assumption of Full Base Rate Neglect

The main text assumed full base rate neglect in order to be able to estimate χ as implied

in each belief. This section justifies that assumption. To do so, I first derive the χ that is

implied in subjects’ stated beliefs without the assumption of base rate neglect. Following

the notation introduced in Section 2.2, a belief can be expressed as:

bSN = (1−χ)
9× 100+
∑N

v=1 sv +
∑6

l=N+1 E[sl | gl]

15
+χ

9× 100+
∑N

v=1 sv

9+ N
.

From this we can derive the implied χ of subject i in task j as

χ̂
j
i =

15× (b j
i − b j

B)

(900+
∑N

i=1 sv)/(9+ N)−
∑6

l=N+1 E[sl | gl]
(4)

which may be contrasted with equation 3, the analogous equation when assuming

base rate neglect. For both of these alternative ways of computing χ, I visualize the

distribution in the Control treatment. The logic is that subjects’ beliefs in Control serve

as a natural benchmark for beliefs in Selected – if they exhibited full base rate neglect,

then that would make the assumption of full base rate neglect in Selected arguably very

plausible. The left and right panel of Figure 6 show that when one assumes base rate

neglect, beliefs in the Control condition are tightly distributed around χ = 0, with
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almost 60% of all beliefs at exactly that value. In contrast, without assuming base rate

neglect (right panel), the implied χ are extremely noisy and span a wide range of

meaningless values. In fact, the only few instances in which some subjects stated beliefs

that reflect χ = 0, the sophisticated benchmark with and the sophisticated benchmark

without assuming base rate neglect are equal. These results show that subjects in the

Control condition essentially only average the visible signals and fully neglect the base

rate.

Figure 5 conducts an analogous exercise for the Selected treatment. Again, when

one assumes full base rate neglect, as established in the main text, beliefs are tightly

distributed around meaningful values and exhibit two large spikes at exactly χ = 0 and

χ = 1. On the other hand, without assuming base rate neglect, the implied χ are again

extremely noisy (note the support of the y-axis). Taken together, these results arguably

strongly suggest that the assumption of full base rate neglect is confirmed by the data.
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Figure 5: Distribution of naïveté in the Control treatment. The left panel depicts the distribution of the
impliedχ in equation 4 (i.e., when assuming base rate neglect), while the left panel depicts the analogous
distribution without assuming base rate neglect, see equation 3.

B.2 Alternative Computation of χ

An alternative plausible updating rule in treatment Selected is to assume that subjects

infer a signal of 100 from computer players whose signals they do not see. The logic

behind 100 is that people might fail to take into account the informational content of

the group entrance decisions of the computer players, but assign to them the base rate

of 100, perhaps akin to cursed reasoning (Eyster and Rabin, 2005).

Figure 7 shows that the corresponding χ look overall reasonable, but the pattern

are much weaker than when assuming that subjects infer nothing from the computer

player’s group entrance decisions. In particular, notice that sophisticated beliefs (i.e.,

fully taking into account the informational content of the computer player’s actions)
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Figure 6: Distribution of naïveté in the Selected treatment. The left panel depicts the distribution of the
impliedχ in equation 4 (i.e., when assuming base rate neglect), while the left panel depicts the analogous
distribution without assuming base rate neglect, see equation 3.

gives rise to χ = 0 in both methods. Thus, the only way to separate the two updating

rules is by considering beliefs that reflect naïve updating. Because fully naïve beliefs

are often very close to each other in both methods of computing χ, it is conceivable that

beliefs of χ = 1 in Figure 7 actually reflect computations that were aimed at computing

a fully naïve belief under the updating rule discussed in the main text.

The perhaps clearest way to see that (probably all) subjects employed the updating

rule described in the main text as opposed to the one described here is by analyzing

how many beliefs are in |χ −1|< 0.05, i.e., within a relatively narrow interval around

full naïveté. It turns out that 96 beliefs satisfy this criterion when χ is computed as

in the main text. Of these 96 beliefs, 69 are outside of the narrow interval when χ

is computed using the method described in this Appendix. In contrast, only 29 beliefs

are in |χ − 1| < 0.05 when beliefs are computed using the alternative updating rule.

However, of these 29 beliefs, 27 are also within the narrow interval when χ is computed

as in the main text. The upshot of this discussion is that there is very little, if any,

evidence for the alternative updating rule when the one described in the main text

yields a different prediction.
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Figure 7: Distribution of naïveté in the Selected treatment. The distribution of naïveté is computed by
assuming that subjects infer a signal of 100 from computer players whose signals they do not observe.

B.3 Kernel Density Estimates for each Task
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Figure 8: Distribution of beliefs by task (1/2). To ease readability, the plots exclude extreme outliers
whose distance to both the fully naïve and sophisticated benchmarks is larger than 20.
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Figure 9: Distribution of beliefs by task (2/2). To ease readability, the plots exclude extreme outliers
whose distance to both the fully naïve and sophisticated benchmarks is larger than 20.
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B.4 Consistency of Beliefs Across Tasks

This section investigates the consistency with which subjects in Selected exhibit a cer-

tain degree of naïveté across tasks. To this end, I define a set of potential types χ =
−2/3,−1/3, . . . , 8/3. Then, for each individual and each χ, I count the number of be-

liefs which reflect naïveté in [χ − 1/3,χ + 1/3]. Denote the number of beliefs in this

interval as nχ . Finally, I take the maximum over all nχ , for each individual. This max-

imum represents the number of beliefs that exhibit a certain degree of consistency.

Figure 10 presents a histogram of this measure, which reveals that the vast majority

of subjects state at least three consistent beliefs, and 70% of all subjects state at least

four consistent beliefs. Thus, overall, subjects’ responses reflect a considerable degree

of consistency.
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Figure 10: Number of consistent beliefs in treatment Selected.
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B.5 Follow-Up Question

The left panel of Figure 11 plots the distribution of responses to the conditional ex-

pectation follow-up question. Almost all subjects provided a response above 100 (i.e.,

they understood at the direction in which they had to update), and roughly two thirds

answered 130.

The left subpanel of the right panel of Figure 11 shows that the vast majority of

subjects who provided a response larger than 100, but did not answer 130, exhibit full

selection neglect (χ = 1). Even more puzzling, those subjects that provided exactly the

correct response of 130 (depicted in the right subpanel), also exhibit strong hetero-

geneity in their naïveté. While the fraction of sophisticated subjects is higher in this

subgroup, many people still fully neglect the selection problem in the belief formation

tasks.
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Figure 11: The left panel plots the responses to the follow-up question in the Selected treatment. The
right panel illustrates the distribution of nav̈eté conditional on providing a response of larger than 100,
but different from 130 (left subpanel), and conditional on answering exactly 130 (right subpanel).

B.6 Details for Correlation Neglect Follow-Up Study

B.6.1 Experimental Design

The design is taken from Enke and Zimmermann (2015). Subjects were asked to esti-

mate a hypothetical true state µ, where I induced a prior belief by informing subjects

that µ would be drawn from N (0;250, 000). Computers A-D generated four unbiased

iid signals about µ by drawing from sh ∼N (µ; 250,000).
As illustrated by Figure 12, intermediary 1 observed the signal of Computer A and

transmitted it to subjects. The intermediaries 2 to 4 observed both the signal of com-

puter A and of computers B to D, respectively, and then reported the average of these

two signals. Since subjects knew the signal of Computer A, they could extract the other
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Figure 12: Correlation neglect information structure

independent signals from the intermediaries’ reports.

As in the experiments designed to identify selection neglect, this treatment fea-

tures an exogenous data-generating process wich is fully known to subjects. Control

questions ensured that subjects understood the mechanics of this process. No feedback

was provided between the five independent tasks. Earnings were computed through a

quadratic scoring rule with maximum earnings of 12 euros: π = max{0;12− 0.01×
(Belief − True state)2}. These experiments lasted 40 minutes on average, and subjects

earned an average of 12.30 euros including a 7 euros show-up fee.

Table 8 presents details on the belief formation tasks as well as median beliefs in

each task. As can be inferred from the rightmost column, median beliefs are always

between the sophisticated and the full correlation neglect benchmark.

B.6.2 Computation and Distribution of Naïveté Parameters

Given the known data-generating process, one can again define andmeasure an individual-

level naïveté parameter. As in the case of selection neglect, I assume full base rate

neglect for this purpose, which is bolstered by the findings in Enke and Zimmermann

(2015). The individual-level naïveté parameter is then computed as follows:

Subjects observed s1 and s̃h = (s1 + sh)/2 for h ∈ {2,3, 4}. When prompted to es-

Table 8: Overview of correlation neglect tasks

True Computer Computer Computer Computer Sophisticated Correlation Median
State A B C D Belief Neglect Belief Belief

-241 249 -699 -139 70 -129.75 59.63 0.00

-563 -446 -1,374 -1,377 -1,475 -1,168 -807 -1,000

38 442 173 58 233 226.5 334.25 250.00

1,128 1,989 781 440 2,285 1,373.75 1,681.38 1373.75

-23 810 -822 -99 409 74.5 442.25 257

Notes. Overview of the correlation neglect estimation tasks in order of appearance. See Section B.6.2 for the
derivation of the sophisticated and the full correlation neglect benchmarks.
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Figure 13: Distribution of median naïveté in correlation neglect task.

timate µ, a sophisticated decision maker would extract the underlying independent

signals from the s̃h and compute the mean Bayesian posterior as bB =
∑4

h=1 sh/4. How-

ever, now suppose that the decision maker suffers from correlation neglect, i.e., he does

not fully take into account the extent to which s̃h reflects s1, but rather treats s̃h (to some

extent) as independent. Call such a decision maker naïve and let his degree of naïveté

be parameterized by χ ∈ [0, 1] such that χ = 1 implies full correlation neglect. A naïve

agent extracts sh from s̃h according to the rule

ŝh = χ s̃h + (1−χ)sh = sh +
1
2
χ(s1 − sh)

where ŝh for h ∈ {2,3, 4} denotes the agent’s (possibly biased) inference of sh. He thus

forms mean posterior beliefs according to

bCN =
s1 +
∑3

h=1 ŝh

4
= s̄+

3
8
χ(s1 − s̄−1)

where s̄ = (
∑4

h=1 sh)/4 and s̄−1 = (
∑4

h=2 sh)/3.
Rearranging yields an individual- and task-specific naïveté parameter:

χ =
8× (bCN − s̄)
3× (s1 − s̄−1)

For each individual, I then define their overall naïveté as the median χ across all

tasks. Figure 13 plots the distribution of (median) naïveté in the follow-up study. As

in Enke and Zimmermann (2015), this distribution exhibits a bimodal structure with

some fraction of subjects fully accounting for the double-counting problem and others

approximately fully ignoring the partial redundancy.

41



B.7 Response Times
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Figure 14: Distribution of naïveté in the Selected treatment, partitioned by whether the total response
time is higher than 7.3 minutes (which is the median response time among subjects with a naïveté
parameter of χ ≤ 0.5). To ease readability, both panels exclude observations outside χ ∈ [−1, 2] (30
out of 336 obs.).

C Robustness Treatments

To establish the phenomenon of selection neglect, the main text reported upon treat-

ment Selected. This appendix reports on two robustness treatments.

In treatment Robustness, I replicated treatment Selected, except for one variation

of the design: subjects only communicated with all computer players from their own

group. Recall that in treatment Selected, subjects talked to all computer players in their

own group, but at least with three. Thus, the Robustness treatment verifies that subjects

also neglect systematic absences when their information sample is even more extremely

skewed and contains either only relatively low or relatively high signals. 45 subjects

took part in this treatment and earned an average of €11.20.

Treatment Base Rate also constitutes a simple variation of the baseline Selected treat-

ment. In Selected, the true state was determined as average of 15 random draws from

the set X . In Base Rate, the true state was determined as average of six random draws

from X only. Given that a subject interacted with five computer players, this implies
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Figure 15: Distribution of naïveté in the Robustness and Base Rate treatments. The figure illustrates the
distribution of naïveté implied in all beliefs (7 per subject) in the respective treatment. To ease readability,
the figure excludes observations outside χ ∈ [−1, 2].

that all six balls that determine the true state are distributed among the subject and

the computers. Thus, there was no scope for neglecting the base rate: subjects either

saw a signal or had to infer it from the fact that the computer players entered the

oposite group.

Figure 15 depicts the distribution of implied χ across the seven belief formation

tasks in both treatments. In both treatments, the results are very similar to the baseline

results. These findings highlight that the result established in the main text hinges

neither on the particular selection mechanism nor on the possibility of neglecting the

base rate.
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D Treatment Disagreement
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Figure 16: Distribution of median naïveté in the first three tasks (i.e., without seeing the beliefs of others).
The density excluces observations outside [-1,2].
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Figure 17: Distribution of decisions in the last four tasks (i.e., when seeing the beliefs of others). The
left panel depicts the distribution of initial beliefs (before seeing the beliefs of the neighbors), and the
right panel the distribution of post-communication beliefs. The histograms exclude observations outside
[-1,2].
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D.2 Raw Correlation Between Pre- and Post-Communication Be-

liefs
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Figure 18: Raw correlation between the naïveté χ implied by first and second beliefs (ρ = 0.86). To
construct this figure, subjects’ pre- and post-communication naïveté is rounded to multiples of 0.05. The
ball size then represents the number of observations in the respective bin. The scatter only includes
observations for which there was at least partial disagreement (since otherwise people do not have
a reason to revise their beliefs). I define disagreement as a binary variable which equals one iff the
receiver’s belief differs from the belief of at least one neighbor in the sense that the implied naïveté of
the receiver is χ ≤ 0.5 and that of at least one neighbor χ > 0.5, or vice versa. To ease readability, the
scatter excludes observations for which the implied naïveté of at least one belief is outside [-1,2].

D.3 Estimation of Relative Weights

The results reported in column (1) confirm the visual impression developed above, i.e.,

subjects assign a much higher weight to their own belief than to that of their neighbors

when they state their second beliefs. The last row of Table 9 reports the ratio of the

weight that the average subject assigns to themselves relative to a random peer. To

estimate these weights, one needs to keep in mind that the coefficient of the average

naïveté of the neighbors picks up the beliefs of two participants. Thus, in column (1),

the coefficient of each neighbor is 0.075, compared to a coefficient of 0.71 on subjects’

own initial belief, which implies that the relative weight subjects assign to their own

updating rule is 9.5. Column (2) shows that subjects assign a lower weight to their

neighbors if their beliefs exhibit a larger degree of disagreement (defined as absolute

difference between the naïveté implied in the neighbors’ beliefs).

For this purpose, I return to using the full set of subjects × task observations. Ta-

ble 9 presents a set of OLS regressions in which I regress subjects post-communication
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beliefs (expressed in units of naïveté) on (i) their own previous naïveté and (ii) the

average naïveté of their neighbors. The resulting OLS coefficients can then be utilized

to estimate the weight that subjects implicitly assign to their own belief formation rule

relative to that of their peers.

The results reported in column (1) confirm the visual impression developed above,

i.e., subjects assign a much higher weight to their own belief than to that of their neigh-

bors when they state their second beliefs. The last row of Table 9 reports the ratio of

the weight that the average subject assigns to themselves relative to a random peer. To

estimate these weights, one needs to keep in mind that the coefficient of the average

naïveté of the neighbors picks up the beliefs of two participants. Thus, in column (1),

the coefficient of each neighbor is 0.075, compared to a coefficient of 0.71 on subjects’

own initial belief, which implies that the relative weight subjects assign to their own

updating rule is 9.5. Column (2) shows that subjects assign a lower weight to their

neighbors if their beliefs exhibit a larger degree of disagreement (defined as absolute

difference between the naïveté implied in the neighbors’ beliefs).

Columns (3) through (6) break these patterns up into sophisticated and neglect

types. As can be inferred from the last row, sophisticates assign a higher weight to

themselves than neglect types (consistent with the visual patterns described above), but

the neglect types still weight their own strategy 6.7 times higher than that of another

randomly drawn subject. In addition, the results show that naïve subjects appear to

react stronger to the consistency with which the neighbors state their beliefs.

D.4 Robustness Checks for Belief Revision

In the main text, sophisticated and naïve subjects were classified based on their out-

of-sample median naïveté parameter from the first three tasks (the first part of the

experiment). Figure 19 reports a robustness check for people’s belief revisions in treat-

ment Disagreement in which sophisticated and naïve subjects are classified based on

both their out-of-sample median naïveté parameter from the first part of the experi-

ment and the respective first belief in the fourth, fifth, sixth, or seventh task.

In the main text, the histogram of subjects’ belief revisions included all observations

for which there was at least minimal disagreement, i.e., in which a subject’s first belief

did not equal the average belief of the two neighbors. I now present a robustness check

in which I show that similar results obtain when I restrict the sample to observations

with large disagreement among subjects. To this end, I again normalize all beliefs into

units of χ and then restrict attention to the subsample for which |χi − χ̄−i| > 0.5, i.e.,

for which the absolute difference between a subject’s belief and the average belief of

the two neighbors exceeds 0.5 units of χ. Figure 20 presents the results, which are
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Table 9: Subjects’ belief revision strategies

Dependent variable: Naiveté implied in second belief

All subjects Sophisticates Naïfs

(1) (2) (3) (4) (5) (6)
Naïveté implied in first belief 0.71∗∗∗ 0.72∗∗∗ 0.71∗∗∗ 0.72∗∗∗ 0.67∗∗∗ 0.68∗∗∗

(0.04) (0.04) (0.06) (0.07) (0.05) (0.05)

Average naïveté of neighbors 0.15∗∗∗ 0.22∗∗∗ 0.099∗∗∗ 0.16∗∗∗ 0.20∗∗∗ 0.29∗∗∗

(0.03) (0.04) (0.03) (0.05) (0.05) (0.06)

Disagreement among neighbors 0.061∗∗ -0.017 0.15∗∗∗

(0.03) (0.03) (0.05)

Avg. naïveté × disagreement of neighbors -0.067∗∗∗ -0.034 -0.099∗∗∗

(0.02) (0.02) (0.03)

Constant 0.19 0.16 0.35 0.36∗ 0.050 0.0088
(0.14) (0.14) (0.22) (0.21) (0.17) (0.17)

Controls Yes Yes Yes Yes Yes Yes
Observations 372 372 171 171 201 201
R2 0.794 0.799 0.734 0.742 0.789 0.802
Relative weight on self 9.5 14.3 6.7

Notes. OLS estimates, standard errors (clustered at subject level) in parentheses. The dependent variable
is the second belief in a given task regressed on the respective first belief statement and the average belief
of the two neighbors. All beliefs are expressed in units of naïveté. Controls include task fixed effects, age,
gender, log monthly income, and high school grades. All regressions exclude observations with |χ̂ j

i | > 3;
the results are robust to including these outliers. Disagreement among the neighbors is defined as the
absolute difference between the naïveté implied by the neighbors’ beliefs. The relative weight variable is
computed as two times the ratio of the regression coefficients of a subject’s own belief and that of their
neighbors. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

slightly weaker, but overall very similar to those presented in the main text.
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Figure 19: Magnitude of belief revisions. Each histogram depicts the belief revision between the first and
second belief (expressed as percent of the difference between the first belief and the average belief of
the two neighbors) conditional on the type of the subject (left / right panel). A subject is classified as
sophisticated if both the out-of-sample median naïveté parameter from the first part of the experiment
and the first belief in the respective task satisfy χ ≤ 0.5 and conversely for naïfs. The figure includes all
observations for which the first belief of a subject does not equal the average belief of the two neighbors.
Adjustments > 100% and < 0% are excluded to ease readability.

D.5 Confidence

A different way to interpret the results from treatment Disagreement is that the neglect

types are quite confident in their erroneous solution strategy. This section develops this

argument a bit further, by considering an additional confidence proxy, i.e., a qualitative

Likert scale question that I asked of subjects after they had completed the first part of

the experiment: “On a scale from 1 (not certain at all) to 10 (very certain), how certain

are you that your previous estimates (and the underlying strategy) were correct?”. 96

subjects took part in this condition and earned €11.60 on average.

To formally analyze the relationship between subjects’ updating type and their con-

fidence, I compute the average belief revision measure by subject. Table 10 shows that

the belief revision measure and the qualitative, non-incentivized confidence proxy are

significantly correlated with each other as well as with being female, providing reassur-

ing evidence for the meaningfulness of both of these constructs. However, neither of the

two confidence proxies is significantly correlated with subject’s median χ as estimated

from the first part of the experiment. Thus, again, neglect types are almost as confident

in their belief formation rule as the sophisticated types.
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Figure 20: Magnitude of belief revisions. Each histogram depicts the belief revision between the first
and second belief (expressed as percent of the difference between the first belief and the average belief
of the two neighbors) conditional on the type of the subject (left / right panel). A subject is classified
as sophisticated if the out-of-sample median naïveté parameter from the first part of the experiment
satisfies χ ≤ 0.5 and conversely for naïfs. The figure includes all observations for which the absolute
difference between a subject’s first belief and the average belief of the two neighbors (all expressed in
units of χ) is larger than 0.5. Adjustments > 100% and < 0% are excluded to ease readability.

Table 10: Raw correlations between confidence, naïveté, and gender

Belief revision Confidence Female Median χ
Belief revision 1
Confidence -0.265∗∗∗ 1
Female 0.250∗∗ -0.240∗∗ 1
Median χ 0.153 -0.131 -0.0113 1

Notes. Pearson correlations. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Belief adjustment and learning

Dependent variable:
Naiveté implied in first belief
(1) (2)

Naiveté in previous task 0.26∗∗∗ 0.30∗∗∗

(0.08) (0.09)

Adjustment in previous task 0.094 0.058
(0.09) (0.10)

Age -0.016
(0.01)

1 if female 0.34∗∗∗

(0.10)

Log [Monthly income] -0.017
(0.05)

Constant 0.41∗∗∗ 0.83∗∗

(0.07) (0.37)

Task FE No Yes
Observations 156 156
R2 0.133 0.428

OLS estimates, robust standard errors (clustered at subject
level) in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

D.6 Learning?

It is conceivable that those naïve subjects who substantially revise their beliefs become

less naïve in subsequent tasks. This could happen, for example, if subjects learn from the

beliefs of more sophisticated subjects. Table 11 presents the results of OLS regressions

of subjects’ naïveté in a given task on the degree of adjustment towards the sophisti-

cated belief in the previous task, conditional on the initial naïveté in the previous task.

In these analyses, the sample is restricted to naïve subjects, i.e., to those participants

whose out-of-sample median naïveté parameter from the first three tasks is larger than

0.5. Results show that those subjects who strongly revise their beliefs do not become

more sophisticated over time. This suggests that some subjects may feel that their own

problem-solving is incorrect, but have no superior way of solving the problem them-

selves.
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E Amazon Turk Survey

In total, 209 participants completed the survey, which lasted less than five minutes.

Each participant earned $0.40 flat. Each participant was asked to assess the relative

difficulty of four pairs of math problems. In particular, participants were asked:

“In your view, which of the following two mathematical tasks is more difficult?”

Task A: Compute the average of 130, 110, 70, and 70.

Task B: Compute the average of 130, 130, 70, and 70.

Task C: Compute the average of 130, 130, 130, and 130.

Task D: Compute the average of 130, 130, 150, and 110.

Task E: Compute the average of 70, 70, 130, and 130.

Task F: Compute the average of 70, 70, 150, and 130.

Task G: Compute the average of 110, 130, 110, and 70.

Task H: Compute the average of 130, 130, 130, and 70.

Respondents used a five-point scale to indicate which task, if any, they deemed

harder. In analyzing the data, for each subject, I compute the average response across

questions, i.e., the average extent to which subjects consider the tasks that relate to

treatment Intermediary (A, D, F, G) more difficult. The main text reports the results.
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F Experimental Instructions

F.1 Overview

F2. Selected and Control

F3. Correlation Neglect Follow-Up Study

F4. Robustness

F5. Base Rate

F6. Disagreement

F7. Salience

F8. Simple and Intermediate

F.2 Treatments Selected and Control

F.2.1 Instructions (Paper-Based)

Translated into English - whenever parts of the instructions differed between the selected

and the control treatment, I always first provide the version from the selected treatment,

followed by the respective part from the control treatment.

Welcome. You will now take part in an economics decision making experiment. You

will receive a show-up fee of 4 euros, which will be paid out to you at the end of the

experiment. How much money you earn on top of that depends on your decisions. In

this experiment, we speak of points. 100 points equal 10 euros. At the end of the ex-

periment, your points will be converted into euros and paid out to you.

Your task

In this experiment, there are two groups: group red and group blue. Being a member

of a group is associated with a monetary reward for you. To be more precise, these two

groups differ in their profitability. Sometimes one group if for profitable for you and

sometimes the other. Whether one or the other group is more profitable depends on

the so-called number X:

• If the number X is larger than 100, the red group is more profitable for you.

• If the number X is smaller than 100, the blue group is more profitable for you.
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Your task will consist of (i) deciding which group you would like to enter and (ii)

providing a precise estimate of the number X.

The number X is randomly determined by the computer. You will not know the num-

ber X. Rather, you will obtain information over X; then you need to take your decisions

based on this information.

The number X is determined as follows. Imagine that in the room next door there

is an urn which contains exactly 6 balls. These 6 balls have the following numbers:

Figure 1: The set of balls from which the computer draws 15 times. Please note that balls that get drawn
are replaced by another ball with the same number, so that each number can get drawn multiple times.

The computer randomly selects 15 balls from this urn, where drawn balls get re-

placed by a different ball with the same number before the next draw. I.e., if the com-

puter draws a 130, a new ball with a 130 gets placed into the urn before the computer

draws again. Thus, each number can get drawn multiple times! Also, this procedure

implies that each time the computer draws, every ball in Figure 1 is equally likely to

be drawn! The computer puts the randomly drawn 15 balls into a box. The average of

the numbers on these 15 balls represents the number X.

As you can infer from the numbers on the balls, it is equally likely that the number

X is larger or smaller than 100. The challenge for you is that you will neither see the

number X nor the randomly 15 balls in the box. Thus, in this experiment, you will not

get a chance to calculate the average of these 15 numbers. Rather, you receive hints

over the number X on which you need to base your decisions.

The hints

In this experiment, you will interact with five other players which are all simulated

by the computer. In what follows, we will call these five computer players I, II, III, IV,

and V.

The computer generates six hints about the number X. The computer generates

each hint by randomly drawing one of the 15 balls that determine the number X. Thus,

again, each number in Figure 1 is equally likely to be drawn as a hint.
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This implies that the hints are very helpful in guessing the number X! In particular,

it holds true that these hints are on average correct, i.e., equal the number X. While

ususally each hint deviates from the number X, these deviations are not systematic, so

that these hints are on average correct (if we would draw a large number of times). You

will have to base your decisions on these types of hints.

In total, the computer generates six hints and distributes these randomly among

you and the five computer players such that everyone receives one separate hint. Each

hint is of equal quality, but everybody sees a different (their own) hint.

In addition to your own hint, you will have access to the hints of some of the com-

puter players. The next section explains how this works.

Course of events in this experiment

In total, we will implement 7 rounds. Please note that these 7 rounds are completely

independent of each other, so that you cannot learn anything from the numbers in one

round about another round. Each of these 7 rounds works as follows:

1. The computer determines the number X, whose realization you will not find out.

The computer generates the six hints and distributes them among you and the

five computer players I-V.

2. You take your first payoff-relevent decision: Based on your hint, you have to decide

whether you would like to enter the blue or the red group. Here, you should note

that you should enter the red group if you believe that the number X is larger

than 100, and the blue group if you believe that the number X is smaller than

100. The computer players take the same decision: they enter the red group if

their own hint is larger than 100 and the blue group if their own hint is less than

100.

3. (SELECTED TREATMENT): You “communicate” with some of the computer play-

ers, i.e., these players will tell youwhich hint they received in the beginning. More

precisely, you will meet at least three computer players and sometimes more:

• You will always obtain the hints of all computer players that opted for your

own group, no matter what. This means that all players which opt for the

same group as you tell you their own hint. Thus, it can never happen that a

player is in your group and you don’t talk to him.

• If there are at least three computer players present in your group, you will

only communicate with these players from your own group.
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• If there are less than three computer players in your own group, you will

additionally communicate with some players from the other group. To this

end, in addition to the players from your own group, the computer randomly

selects players from the other group until you have three communication

partners in total.

• This procedure implies that you may not directly learn about all six hints

because you may not communicate with all computer players from the other

group.

• In communicating with you, the computer players never make mistakes and

always truthfully tell you the hint they received.

(CONTROL TREATMENT): You “communicate” with the computer players, i.e.,

these players will tell you which hint they received in the beginning. Here, we dis-

tinguish between two different types of meeting a computer player. While these

types differ, on average all communication pieces are equally helpful:

• You will always obtain the hints of all computer players that opted for your

own group, no matter what. This means that all players which opt for the

same group as you tell you their own hint. Thus, all players that decide for

the same group as you will tell you their own hint in a precise way.

– If there are at least three computer players present in your group, only

these players will tell you their precise hints.

– If there are less than three computer players in your own group, some

players from the other group will also tell you their precise signal. To

this end, in addition to the players from your own group, the computer

randomly selects players from the other group until you have three com-

munication partners that tell you their own hints in a precise way.

• In addition, you also communicate with the players that do not tell you their

precise hint. These other players also provide you with useful information: if

their own hint is 50, 70, or 90, they tell you “70”, which equals the average

of this set. If the hint of the respective computer player was 110, 130, or

150, he tells you “130”, which also equals the average of the respective set.

• In communicating with you, the computer players never make mistakes and

always truthfully tell you the hint they received. While it may be slightly con-

fusing that you will communicate with the computer players in two different

ways, the only important issue for you is to understand that all messages of

the computer players are equally valuable and ON AVERAGE correct.
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4. (BOTH TREATMENTS): You take your second payoff-relevant decision: You need

to provide an estimate of the number X.

Your payment

In addition to your show-up fee, you will get paid according to your decisions. Since

we will implement 7 rounds, you need to estimate the number X 7 times and you also

need to decide 7 times which group to enter. The computer will randomly select ONE

of these 14 decisions and you will then get paid according to that decision. The prob-

ability that an estimate will get selected is 80%, while the probability that your group

membership will get paid out is 20%. This means that every single one of your decisions

is potentially relevant for your earnings so that you should carefully think through all

decisions.

In case your group membership gets paid, your earnings will get determined as

follows:

• The number X is larger than 100:

– You are in the red group: 120 points

– You are in the blue group: 20 points

• The number X is smaller than 100:

– You are in the red group: 20 points

– You are in the blue group: 120 points

• The number X equals 100: You earn 120 points in both groups.

You should note that you should enter the red group if you believe that the number

X is larger than 100 and the blue group if you believe that the number X is smaller than

100.

In case your estimate of the number X gets paid, you will receive more money the

closer your estimate is to the number X. At most, you can earn 180 points with your

estimate. The further away your estimate from the truth, the less you earn. This is

determined according to the following formula (in points):

Earnings = 180− 2× (Difference between estimate and truth)2

This means that the difference between your estimate and the true value will get

squared and multiplied by 2. This value will then get subtracted from the maximum

earnings of 180 points. While this formula may look complicated, the underlying prin-

ciple is very simple: the smaller the deviation between your estimate and the true value,
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the higher your earnings. Note that your earnings in this task cannot be negative, i.e.,

you cannot make losses. You should also note that your earnings only depend on the

absolute difference. Thus, it doesn’t matter for your payment whether you overestimate

or underestimate the true value by 5.

IMPORTANT: Please note that, in this experiment, on average you can earn the most

money if you always truthfully enter your actual estimate. Since only one of your de-

cisions will get paid, it doesn’t make sense for you to “strategize” by, e.g., sometimes

entering the blue and sometimes the red group, or by sometimes providing a high esti-

mate and sometimes a low estimate. In order to earn as much money as possible, you

should always try to take the best decision you currently have in mind.

Example

Suppose that the computer has determined the number X. Now the computer gener-

ates the six hints and distributes them among you and the five computer players. Based

on your hint, you need to take a decision about your group membership, as illustrated

in Figure 2. In this example, your own hint is 50. Suppose that you decide to opt for

the blue group since the hint is smaller than 100.

Figure 2: Exemplary screenshot for the first decision.

The computer players now take the same type of decision as you, i.e., they enter

the red group if their hint is larger than 100 and the blue group if their hint is smaller

than 100. Suppose that two computer players obtain a hint of less than 100 and hence

enter the blue group, like you. The other three computer players see a hint of larger
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than 100 and hence enter the red group. However, we will not tell you all of this.

(SELECTED TREATMENT): Subsequently, you will communicate with the two com-

puter players from your own group. These two obtained hints of 90 and 50, respectively.

Since your group contains less than three computer players, the computer randomly

selects one further communication partner from the other group, so that you have 3

communication partners in total. This computer player obtained a hint of 150. Figure 3

presents a screenshot of the second decision screen for this example. You then need to

enter an estimate of the number X.

(CONTROL TREATMENT): Subsequently, youwill obtain the precise hints of the two

computer players from your own group (90 and 50) as well as of one other randomly

selected player from the other group (150). In addition, you will obtain – in a somehwat

more coarse way – the hints of the remaining two players in the other group (130 and

130). Figure 3 presents a screenshot of the second decision screen for this example. You

then need to enter an estimate of the number X.

Figure 3: Exemplary screenshot for the second decision.

Space for personal notes (You may write on these instructions, if you like)
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F.2.2 Control Questions (Computerized)

Note: Across all treatments, the control questions were presented on a computer screen such

that a given decision screen contained usually five separate control questions. Subjects could

only proceed to the next screen once they had correctly answered all questions. If at least one

answer was incorrect, the subject was notified of this, but the program didn’t tell subjects

which question they got wrong. Also note that the BonnEconLab has a control room in

which the decision screens of all 24 subjects can be monitored. Whenever a subject appeared

to have problems in solving the control questions, one of the experimenters approached

that subject, clarified open questions. Subjects which showed a clear lack of understanding

of the experiment were excluded from the analysis, but were allowed to take part in the

experiment so as to avoid noise due to subjects’ leaving the room and getting paid while

others were completing their tasks.

• What is your main task in this experiment?

1. There are 20 numbered balls. I need to add these 20 numbers up.

2. I need to estimate the number X.

• Please assess the following statement: “In total, 15 balls will be randomly selected

and be put into a box. In each draw, each number is equally likely to be drawn.”

1. False. If, e.g., 110 gets drawn, then it is more likely that the next draw will

not be a 110.

2. Correct. If a number gets drawn, it will get replaced by the same number,

so that all numbers are equally likely again.

• Your hint is larger than 100. Is this indicative that the red or the blue group is

more profitable?

1. I can’t know.

2. The blue one.

3. The red one.

• A computer player receives a hint of 70. What does he do?

1. He randomly enters a group.

2. Because the hint indicates that X is smaller than 100, he enters the blue

group.

3. Because the hint indicates that X is smaller than 100, he enters the red

group.
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• In estimating the number X, how can you earn the maximum amount of money?

1. By strategizing, i.e., sometimes providing and low and sometimes a high

estimate.

2. By always entering my estimate in the most precise way.

• Which of your decisions is payoff-relevant?

1. Every decision gets paid.

2. No decision.

3. One randomly selected decisions gets paid.

• (SELECTED TREATMENT ONLY): What do you learn from the players that you

communicate with?

1. They tell me the number on their ball, but make mistakes in doing so.

2. Nothing.

3. Every player I communicate with truthfully tells me the number on his ball.

• (SELECTED TREATMENT ONLY): Which players tell you their hints?

1. All.

2. At least three, but all players from my group no matter what.

3. At least four.

• (SELECTED TREATMENT ONLY): Suppose you’re in the red group. What do you

know about a computer player if he does not communicate with you?

1. Nothing.

2. He must be in the blue group and his hint hence be smaller than 100.

3. He must be in the blue group and his hint hence be larger than 100.

• (SELECTED TREATMENT ONLY): Suppose a player is in the red group. Which

hint must he have seen, ON AVERAGE?

1. 50

2. 70

3. 90

4. 110
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5. 130

6. 150

7. I can’t know.

NOTE Recall footnote 9 in themain text: This control questionwas phrased subopti-

mally. Here, roughly 25% of subjects indicated to the experimenter that they

did not understand the concept of an “average signal” given that the ques-

tion asked for the signal of one particular computer player; nevertheless, all

of these subjects showed a clear understanding that the signal of that com-

puter player must have been larger than 100. Given that an incentivized

follow-up question explicitly investigated subjects’ ability to compute con-

ditional expectations, subjects were allowed to continue to the experiment

after the experimenter privately explained how to interpret the phrase “av-

erage signal”.

• (CONTROL TREATMENT ONLY): What do you learn from the computer players

you communicate with?

1. They tell me the number on their ball, but make mistakes in doing so.

2. Nothing.

3. Every player I communicate with truthfully tells me the number on his ball

or the average of the respective set.

• (CONTROL TREATMENT ONLY): What do you learn from the players that do not

tell you their precise hint?

1. Nothing.

2. They also provide me with useful hints, which are on average correct.

3. They tell me useless things.

• (CONTROL TREATMENT ONLY): Which statement is correct?

1. If I compute the average of the six hints, I’m correct on average.

2. Only the precise hints I receive from some players are correct.

3. I can’t know which hints are on average correct.
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F.3 Correlation Neglect Follow-Up Study

F.3.1 Instructions (Paper-Based)

You will now take part in an economic experiment. You will receive a show-up fee of

4 euros,²⁴ which will be paid out to you at the end of the experiment. You can earn

additional money which will also be paid out at the end of the experiment. How much

you earn depends on your decisions. In this experiment, we will talk about points. 100

points correspond to 10 euros. The points you earn during the course of the experiment

will be exchanged into euros and paid out at the end of the experiment. During the ex-

periment, communication with other participants is not allowed. The curtain of your

cabin must be closed at all times. If you have questions, you can raise your arm out of

your cabin and the experimenter will try to answer your questions.

Your task:

In this experiment, you will have to solve five estimation tasks. In these tasks, you

will have to estimate an unknown number X. In each round, the computer randomly

determines the number X, which will however be unknown to you. As will be explained

in more detail below, you will receive some information about this number. Then you

will be asked to provide an estimate about X. In total, there are 5 rounds; in each round,

you will face a new estimation task, i.e., in each round the computer will determine a

new number X and that number will be entirely independent from the numbers in the

other rounds.

Your earnings will depend on how precisely you estimate, i.e., how close your esti-

mate is to the actual number X. At the end of the experiment, one of the five tasks will

be randomly selected and you will be paid according to the precision of your estimate

in this task. This will be explained in more detail in the next section.

Your earnings:

In addition to your show-up fee you will be paid according to the precision of your

estimates. You receive more money the closer your estimate is to the true number of

items in the container. One of the five estimation tasks will be randomly selected for

payment and you will be paid according to the precision of your estimate in that task.

This means that every estimate is potentially relevant for your payment, so that you

should think about each task carefully.

You earn more money the closer your estimate to the number X. You can earn at

most 120 points. The further away your estimate lies from the true value, the lower will

²⁴Subjects received an additional 2 euros for filling out the sociodemographic questionnaire after the main
part of the experiment.
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be your earnings. This will be determined according to the following formula:

Payment = 120− 0.1001× (Difference between estimate and truth)2

This means that the difference between your estimate and the true value will be

squared and multiplied by 0.001. This number will then be deducted from the maxi-

mum earnings of 120 points. While this formula may look complicated, the underlying

principle is very simple: the smaller the difference between your estimate and the true

value, the higher your earnings. However, your earnings can never be smaller then zero,

i.e., you cannot make losses. You can also see that your earnings only depend on the ab-

solute difference. For example, it does not matter whether you over- or underestimate

the true value by 5.

IMPORTANT: Please note that, in this experiment, on average you can earn the most

money if you always truthfully enter your actual estimate. Since only one of your de-

cisions will get paid, it doesn’t make sense for you to “strategize” by, e.g., sometimes

providing a high estimate and sometimes a low estimate. In order to earn as much

money as possible, you should always try to take the best decision you currently have

in mind.

The estimation task:

In each round you will have to provide an estimate about an unknown number X.

As already mentioned, for each round the computer will randomly determine a new

number X. You will not know this number. The computer draws this number for each

round from a probability distribution, that is displayed below.
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Figure 4: Distribution from which the computer draws X.
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The distribution you see in Figure 4 is a so-called normal distribution. The distribu-

tion has a mean of 0 and a standard deviation of 500.²⁵ Although you will not know

the number X, the graph tells you something about the range from which X is drawn.

After the computer has drawn X, you will need to provide an estimate about X. For

that purpose, for every estimation task, you will receive different computer-generated

pieces of information about the correct estimation result. For every task, you will see

this information and then enter your own estimate. The information you receive will

be explained in detail below.

Information regarding the estimation tasks:

Your task in this experiment is to provide an estimate about a randomly drawn

number X (unknown to you), based on some information. For every estimation task,

you will receive different computer-generated pieces of information about the number

X. For every task, you will see this information and then enter your own estimate. The

information you receive will be explained in detail in the following.

On computers, we simulate devices which solve exactly the same estimation tasks

as you. There are two different types of devices. First, there are devices which them-

selves provide an estimate of X (these devices will be called estimation devices and

are denoted by letters). Second, there are devices which observe the estimates of the

estimation devices and compute their own estimate from these reports (these devices

are referred to as communication devices and denoted by numbers).

The estimation devices provide an estimate about the number X, and the estimates

of these devices are completely independent from each other. The estimation devices

all have the same quality, i.e., they are equally good in determining estimates. Note

that these estimation devices are good at solving these estimation tasks:

The estimation devices determine an estimate by randomly drawing a number from a

normal distribution. Importantly, this distribution takes as mean the number X, and a

standard deviation of 500. The figure below shows you an example of such a distribu-

tion. You can see that the highest point of the bell curve is at the number X, i.e., the

correct value. The further you move away from X, the less likely it is that the corre-

sponding numbers are drawn from the estimation devices.

This means that the estimation devices are good at solving the estimation task. If the

estimation devices would provide a large number of estimates, then the average of these

estimates would be correct. While almost every individual estimate will be incorrect, the

average taken over many estimates will be very precise. In addition, many estimates

²⁵The exact distribution of a normal distribution with mean 0 and a standard deviation of 500 is given
by the following formula: f (x) = 1

500
p

2π
ex p(− x2

500000 ). Throughout the experiment, we round all drawn
numbers to integers.
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Figure 5: Distribution from which the estimation devices draw their estimates.

will be rather close to the correct value.

Summary: (1) The devices draw from a normal distribution with mean X. This

means that the estimation devices are good at solving the estimation task. If the es-

timation devices would provide a large number of estimates, i.e., if they would draw

many times from the normal distribution, then the average of these estimates would

be correct (or very precise). (2) The devices make mistakes, but it is much more likely

that the estimate is close to the true value, than that it is very far away.

For every estimation task, there are a total of four estimation devices (A, B, C, D).

These four devices, which are completely independent from each other, each randomly

draw an estimate from the normal distribution (with mean X and a standard deviation

of 500).

Apart from the estimation devices, there are also four communication devices (1, 2,

3, 4). These communication devices do not determine an own estimate. Rather, they

observe the estimation devices and compute an estimate from these observed estimates.

Intermediary 1 only observes estimation device A, and simply transmits the estimate of

estimation device A. Intermediaries 2, 3, 4 each observe the estimates from two of the

estimation devices, and compute an estimate from these two estimates by computing

the respective average.

You will receive the following information as described in the following Figure.

SUBJECTS SAW THE APPLICABLE FIGURE AS SHOWN IN THE MAIN TEXT.

This means that you will receive the following information: As is evident from the
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figure, communication device 1 receives the estimate from estimation device A and

reports this estimate to you. The other communication devices all see the estimate of

estimation device A and of one other estimation device. As you can see in the figure,

communication device 2 receives the estimates of estimation devices A and B. Com-

munication device 3 sees the estimates of estimation devices A and C. Communication

device 4 sees the estimates of estimation devices A and D. The communication devices

2, 3, 4 take the average of these two estimates and report this average as their estimate.

Summary: You receive the estimates of the communication devices 1, 2, 3 and 4.

The following simple example illustrates this. We again assume that the correct

number X is 150. Let’s assume for this example that the estimates of the four estimation

devices would be as follows:

Estimation device A: 81.0

Estimation device B: 127.0

Estimation device C: 209.0

Estimation device D: 176.0

Communication device 1 would then report the estimate of estimation device A.

The communication devices 2, 3, 4 would take the average of the two estimates they

see, as described above. The communication devices would thus report the following

estimates:

Communication device 1: 81.0

Communication device 2: 104.0

Communication device 3: 145.0

Communication device 4: 128.5

Thus, for this estimation task, you would see the following information on your com-

puter screen:

SUBJECTS SAW A SCREENSHOT ANALOGOUS TO THE ONE SHOWN IN THE

BASELINE INSTRUCTIONS ABOVE.

Please read these instructions again carefully. Afterwards, you will answer a set of

control questions at the computer in order to check your understanding of the instruc-

tions.

F.3.2 Control Questions (Computerized)

Questions 1 and 3 as in the individual baseline conditions
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• In this experiment, you have to solve five estimation tasks. Which of these tasks

will be relevant for your final profit?

1. At the end of the experiment, one estimation task will be randomly selected.

Profits will be paid out according to performance in this task.

2. None of the estimation tasks will be paid out.

3. At the end of the experiment, three estimation tasks will be randomly se-

lected. Profits will be paid out according to performance in these tasks.

4. All estimation tasks will be paid out.

• Your profit in this experiment will depend on the precision of your estimates.

Suppose your estimate differs from the true value by 1000. How many points

will you receive if this task is relevant for your profit?

1. 100 points

2. 50 points

3. 0 points

• The estimation devices provide estimates for every estimation task. What can you

say about the quality (regarding the probability of making errors) of the different

estimation devices?

1. The quality of the estimation devices is identical, i.e., the estimation devices

do not differ in this respect.

2. The quality of the estimation devices differs. Estimation device C is the best

one.

3. The quality of the estimation devices differs. Estimation device A is the best

one.

• What is the mean of the distribution from which the number X is drawn?

1. I cannot know this.

2. 0.

3. 100.

• What is the relation between the standard deviation of the distribution from

which X is drawn and the standard deviation of the distribution from which the

estimation devices draw their estimates?

1. The standard deviation of both distributions is 500, i.e., identical.
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2. The standard deviation of the distribution from which X is drawn is larger.

3. The standard deviation of the distribution from which X is drawn is smaller.

• Which of the following statements about your payment is correct?

1. The closer my estimate is to the true value X, the smaller my earnings.

2. The closer my estimate is to the true value X, the higher my earnings.

• Which of the following statements is correct?

1. If estimation device B reports an estimate of 3160, then all other estimation

devices will also report an estimate of 3160.

2. The estimates of the estimation devices are independent of each other, so

that they potentially report different estimates.

• Suppose estimation device A estimates 6. Estimation device B estimates 12 and

estimation device C 16. Which estimate will communication device 2 report?

1. 6

2. 9

3. 11

4. 12

5. 16

• Suppose estimation device A estimates 6. Estimation device B estimates 12 and

estimation device C 16. Which estimate will the communication device 3 report?

1. 6

2. 9

3. 11

4. 12

5. 16

• Which information will be provided to you for every estimation task?

1. You will see the number X.

2. You will see the estimates of all estimation devices.

3. You will see the estimates of the communication devices 1, 2, 3 and 4.
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F.4 Treatment Robustness

The paper-based instructions for this treatment were identical to those in Selected, ex-

cept that the communication stage with the computer players was simplified. That is,

the instructions are identical except for step 3. of the “course of events” section of the

instructions for Selected. In this new treatments, step 3. reads as follows:

3. You “communicate” with some of the computer players, i.e., these players will

tell you which hint they received in the beginning.

• You will obtain the hints of all computer players that opted for your own group,

no matter what. This means that all players which opt for the same group as you

tell you their own hint. Thus, it can never happen that a player is in your group

and you don’t talk to him.

• This procedure implies that you may not directly learn about all six hints because

you will not communicate with the computer players from the other group.

• In communicating with you, the computer players never make mistakes and al-

ways truthfully tell you the hint they received.

F.5 Treatment Base Rate

The paper-based instructions for this treatment were identical to those in Selected, ex-

cept that X was determined by six random draws, as opposed to 15 random draws.

F.6 Treatment Disagreement

F.6.1 Written Instructions

The paper-based instructions for the first part were essentially identical to those in Se-

lected. The only difference is that subjects were told that the experiment consists of two

parts and one of those parts will be randomly selected for payment. The first part then

consisted of three rounds (the first three rounds from Selected). Subjects were then un-

expectedly interrupted by the following computer screen:

Question: You just completed three rounds. Please answer the following question:

“On a scale from 1 (not certain at all) to 10 (very certain), how certain are you that

your previous estimates (and the underlying strategy) were correct?”
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Afterwards, the experimenter distributed the written instructions for the second

part:

Instructions – Second part

The second part of the experiment is very similar to the first part. You will now

complete an additional four rounds, which work almost the same as previously: You

will receive a hint, enter a group, see the hints of some of the computer players and

then estimate the number X.

Nevertheless, there are some changes to the first part. More specifically, the next

four rounds work as follows:

1. The computer determines the number X. You as well as the five computer players

I-V receive a hint each, just as before.

2. After you have received your own hint, you will not decide whether to enter the

blue or red group yourself. Rather, this decision will be made by the computer

in a fashion that was also optimal for you in the first part of the experiment: if

your own hint is higher than 100, you will enter the red group, and if your hint

is below 100, you will enter the blue group. This is a small change, but the basic

mechanism is still the same as before. The same holds true for the computer

players, i.e., just as before, they enter the red group if their signal was above 100

and the blue group if their signal was below 100.

3. As before, you will learn the hints of some of the computer players. The procedure

through which the computer players with whom you communicate get selected,

is the same as before. That is, you will communicate with at least three computer

players, but always with all players who are in your own group. Subsequently,

you will have to estimate the number X, as before.

4. Here is the main change: After you have provided your estimate, we will ran-

domly select two other participants from this session (where every participant

who is present has the same probability of being selected).²⁶ Then, we will show

you the estimates which these two players have provided. Please note that all par-

ticipants in this room receive exactly the same information as you! That is, steps

1-3 from above are the same for all participants: everyone receives the same hint,

enters the same group and obtains the hints of the same computer players. Put

²⁶More precisely, this will be determined such that the estimate of every participant will be shown to
two other participants. However, it can never happen that you will see the estimate of the same player
twice in any given round.
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differently: until you provide your own estimate, everyone sees the same informa-

tion on their computer screen. Hence, please note again that the two participants

whose estimates you will see, received exactly the same information as you!

5. Subsequently, you will provide a second estimate over X. This estimate can be the

same as you provided before, but you can also change it, if you like to do so. The

screenshot on the next page visualizes this situation.

We will implement this procedure in every one of the following four tasks. Please

note that the computer randomly selects anew, whose estimates will be shown to you.

Thus, it is not necessarily the case that you will always see the estimates of the same

two participants!

Figure 6: Screenshot for the second estimate, after both you and the other two participants have provided
a first estimate

Your remuneration

In case this second part of the experiments gets selected for payment, you will re-

ceive the following remuneration, in addition to your show-up fee:

In the four rounds, you will provide 4×2= 8 estimates. The computer randomly se-

lects one of these estimates and you will be paid according to how precise this estimate

was: The closer your estimate to the number X, the more money you receive. You can

earn 180 at most, and your remuneration will be determined according to the formula
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in the first part of the instructions.

F.6.2 Verbal Summary (Read Out Aloud)

After subjects had read the second part of the instructions, the following summary was

read out aloud:

Compared to the first part, there are two changes, one minor and one major. First,

now you will not decide yourself which group to enter. Rather, the computer will make

this decision for you. However, the mechanisms through which this happens is likely

the same as your own decision rule in the first part: whenever your signal is above 100,

you enter the red group and whenever your signal is below 100, you enter the blue

group. Thus, this change is rather minor. More importantly, after you have provided

your estimate, you will see the estimates of two other randomly selected participants

who are present in this room at the moment. You then need to provide a new estimate,

which can either be the same or a different one, as you wish. Just to be clear, every

participant in this room receives exactly the same information, i.e., everyone gets the

same hint, enters the same group, and talks to the same computer players. Thus, nobody

in this room will see anything different on their computer screen than you.

F.7 Treatment Salience

This treatment was identical to the selected treatment, except for the hint provided in

the main text.

F.8 Treatments Simple and Intermediate

The paper-based instructions for these treatments were identical to those in Selected,

except for the set from which the true state and the signals were drawn.
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