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Many information structures generate correlated rather than mutually independent signals, the news
media being a prime example. This article provides experimental evidence that many people neglect the
resulting double-counting problem in the updating process. In consequence, beliefs are too sensitive to
the ubiquitous “telling and re-telling of stories” and exhibit excessive swings. We identify substantial
and systematic heterogeneity in the presence of the bias and investigate the underlying mechanisms. The
evidence points to the paramount importance of complexity in combination with people’s problems in
identifying and thinking through the correlation. Even though most participants in principle have the
computational skills that are necessary to develop rational beliefs, many approach the problem in a wrong
way when the environment is moderately complex. Thus, experimentally nudging people’s focus towards
the correlation and the underlying independent signals has large effects on beliefs.
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1. INTRODUCTION

A pervasive feature of information structures is that decision makers are exposed to correlated
signals. For example, various news media share common information sources such as press
agencies, so that the contents of different news reports (newspaper articles, television shows,
online print) tend to be correlated. Similarly, in social networks, the opinions of different network
members are often partly based on information from a mutually shared third party, so that, in
communicating with these people, one is confronted with correlated information. A common
feature of these information structures is that similar “stories” are getting told and retold multiple
times (Akerlof and Shiller, 2009), which implies the presence of informational redundancies, i.e.
potential double-counting problems.

Taking this observation as point of departure, we employ a series of laboratory experiments to
make two contributions. First, we provide clean evidence that in a relatively simple and completely
transparent setting people neglect correlations in information sources when forming beliefs, albeit
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with a strong heterogeneity at the individual level.1 As a consequence, just like recent models
of boundedly rational social learning predict, people’s beliefs are excessively sensitive to well-
connected information sources and hence follow an overshooting pattern. Secondly, we develop a
series of treatment variations to uncover that people do in principle possess the mathematical and
computational skills that are necessary to process correlated information in our setting. However,
when the informational environment is sufficiently complex, many people exhibit conceptual
problems in identifying and thinking through the correlation in the first place. As a consequence,
exogenously shifting subjects’ focus towards the correlation and the underlying independent
signals has large effects on beliefs.

In the baseline experiment, subjects need to estimate an ex ante unknown state of the world
and are paid for accuracy. The key idea of our experimental design is to construct two sets of
information (one with and one without a known and simple correlation) that are identical in terms
of informational content, and should thus result in the same belief. In a between-subjects design,
one group of subjects receives correlated, the other uncorrelated information. The entire signal-
generating process is computerized, and subjects know the precise process generating the data. In
this setup, computers A through D generate four unbiased i.i.d signals about the state of the world.
In the Uncorrelated condition, subjects observe these four independent signals. In the Correlated
treatment, participants also receive four messages, which consist of the signal of computer A
as well as the average of the signals of A and B, of A and C, as well as of A and D. Thus, the
signal of the common source A is partially recurring in multiple messages, implying a potential
double-counting problem. Viewed through the lense of our motivating examples, this setup could
reflect a news reader who has access to different news sources, all of which partially rely on
the same press agency. Similarly, the setup mirrors a network context in which an individual
communicates with various friends, all of which have previously communicated with a mutually
shared acquaintance.

In this setting, the correlation structure has a particularly simple form because the signal of
computer A is known, so that subjects only need to invert averages to back out the underlying
independent signals. Despite extensive instructions and control questions, our results indicate
that, on average, subjects treat correlated information partially as independent and hence double-
count the signal of the common source A. Thus, while beliefs remain statistically unbiased ex ante,
they are highly sensitive to the well-connected information source and exhibit excessive swings,
an effect that is sizeable, significant, and causes lower payoffs. In light of the strong average
tendency to neglect correlations, we proceed by specifying the precise and possibly heterogeneous
updating rules subjects employ. We find that beliefs follow a roughly bimodal distribution: most
people are either fully sophisticated or very naïve about the correlation, which points to the
presence of two fundamentally different belief formation types. In particular, those subjects that
do not successfully process correlations form beliefs by following a particular simple heuristic of
averaging the correlated messages. The strong type heterogeneity is significantly associated with
cognitive skills. At the same time, the relationship between subjects’ response times (a commonly
used proxy for cognitive effort; Rubinstein, 2007, 2016) and beliefs is weak at best, both within the
main treatment condition and when we exogenously increase response times through a moderate
increase in financial incentives.

The second part of the article investigates the mechanisms underlying the observed neglect
of correlations. We start our corresponding quest by examining the role of complexity, which has
previously been shown to affect updating mistakes and thus serves as a natural starting point for
our analysis (e.g. Charness and Levin, 2009). We exogenously manipulate the complexity of the

1. Throughout the article, a correlation is implicitly understood as being conditional on a state realization. Also,
we only refer to positive correlations.
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updating problem by reducing the number of signals and resulting messages, so that subjects only
need to process two pieces of information. In this low complexity version of our experiments,
correlation neglect essentially disappears.

While this finding highlights that correlation neglect is not universal, but rather a function
of the environment, it leaves open the precise mechanism through which complexity generates
neglect. To make progress, we conceptualize belief formation as three steps of reasoning, all of
which are potentially affected by our complexity manipulation: first, people need to notice the
double-counting problem inherent in our experimental environment, i.e. they need to realize that
taking the correlated messages at face value is suboptimal; secondly, subjects need to understand
that this double-counting problem can be overcome by backing out the underlying independent
signals; thirdly, they need to be willing and able to execute the mathematical computations that
are necessary to develop unbiased beliefs. Crucially, in this framework, the first two steps refer
to conceptual problems that people might have in processing correlations, while the last step is
about mathematical or computational problems.

Given that conceptual and mathematical limitations likely have different implications for both
policy and potential formalizations of correlation neglect, we develop two treatment variations
to separate these two broad mechanisms. First, building on the low complexity environment,
we elucidate the role of the size of the information structure. We design a treatment in which
we fix the mathematical steps that are required to solve the problem, but manipulate how many
messages subjects observe based on the independent signals. The corresponding results establish
that a “larger” information structure causes significantly more correlation neglect even when the
required mathematical operations are unaffected. Thus, the complexity of information structures
seems to affect belief updating (also) through its effect on people’s ability to notice and think
through the correlation, which rationalizes the observed difference in correlation neglect between
the baseline and low complexity experiments.

To lend further credence to the idea that subjects struggle predominantly with the conceptual
difficulty of detecting and thinking through the correlation, and to provide evidence on how
subjects could be debiased, we design an additional treatment variation. Here, the experimental
procedures exogenously draw people’s focus towards the mechanics that generate the correlation,
but again hold fixed the mathematical steps that are required to be rational. In a within-
subjects treatment, participants are confronted with both the correlated and the uncorrelated
information structure from the baseline treatments, which is meant to induce subjects to focus
on the key difference between the two environments. The results show that the vast majority of
subjects states rational beliefs in this condition. Thus, taken together, two conceptually distinct
treatment variations show that correlation neglect can be meaningfully affected by features of the
environment that are independent of purely math-based explanations. This set of results points
to the importance of people’s problems in noticing and thinking through the correlation in the
first place, and speaks against the notion that people cannot (or do not want to) engage in the
calculations that are necessary to process relatively simple correlated messages.

This article contributes to the literature on boundedly rational belief formation by identifying
an error in statistical reasoning that is associated with a pervasive feature of real information
structures such as the news media (see e.g. Charness and Levin, 2009; Charness et al., 2010;
Benjamin et al., 2013; Esponda and Vespa, 2014; Hanna et al., 2014; Ngangoue and Weizsäcker,
2015; Jin et al., 2016, for recent documentations of bounded rationality in other contexts).
Conceptually, our article moves beyond existing work by studying in detail the roles of complexity
and focus for biased statistical reasoning.2

2. Brocas et al. (2014) highlight the relevance of attention in strategic settings. Gennaioli and Shleifer (2010),
Bordalo et al. (2016), and Schwartzstein (2014) provide models of attention-driven updating errors.
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Our experiments can be interpreted in terms of learning in networks. Eyster and Rabin (2014)
develop a model to show that rationality often requires people to anti-imitate others because of the
need to subtract off sources of correlations. In consequence, these authors argue, empirical tests are
needed to separate whether people follow others for rational reasons or due to correlation neglect.
We establish correlation neglect (and the resulting excessive “imitation”) in a setup in which
the signal-generating process is known and simple.3 Our findings hence support the assumptions
underlying recent theories of inferential naïveté in social interactions (e.g. DeMarzo et al., 2003;
Eyster and Rabin, 2010; Golub and Jackson, 2010; Bohren, 2016) as well as bounded rationality
models in political economy (Levy and Razin, 2015; Ortoleva and Snowberg, 2015).4

Relatedly, Shiller (2000) and Akerlof and Shiller (2009) have argued that “exuberant” public
opinions or “panics”, driven by the multiple occurrence of similar stories in social networks,
may be a driver of aggregate distortions. In Online Appendix F, we report on experiments along
these lines and show that, in an experimental asset market, the incidence of correlated (and hence
partially recurring) news leads to pronounced and predictable price distortions.

The remainder of the article is organized as follows. In the next section, we present our baseline
experiments. Section 3 investigates the mechanisms underlying correlation neglect. Section 4
discusses extensions of our experiments and concludes.

2. EVIDENCE FOR CORRELATION NEGLECT

2.1. Experimental design

An environment in which updating from correlated sources can be studied requires (i) control over
signal precision and correlation; (ii) subjects’ knowledge of the data-generating process; (iii) a
control condition that serves as benchmark for updating in the absence of correlated information;
and (iv) incentivized belief elicitation. Our design accommodates all of these features.

Subjects were asked to estimate an ex ante unknown continuous state of the world μ and were
paid for accuracy. The task was framed as guessing how many items are contained in an imaginary
container. In order to keep the experiment as simple as possible, we refrained from inducing prior
beliefs.5 The only information provided to participants consisted of unbiased computer-generated
signals about the true state. The key idea of the between-subjects design was to construct two
sets of signals (one with and one without a known and simple correlation), which are identical in
terms of their objective informational content. As depicted in Figure 1, subjects in the Correlated
treatment received correlated and subjects in the Uncorrelated condition uncorrelated information
about μ.

The computers A–D generated four unbiased i.i.d signals about μ, which were identical across
treatments and subjects. Technically, this was implemented by random draws from a truncated
discretized normal distribution with mean μ and standard deviation σ =μ/2.6 In the Uncorrelated
treatment (left panel), the intermediaries 1–3, who are fictitious computers themselves, observed
the signals of computers B through D, respectively, and simply transmitted these signals to

3. A literature in cognitive psychology explores how people aggregate potentially correlated opinions in settings in
which the structure generating the information is left ambiguous to subjects (Budescu and Rantilla, 2000; Budescu and Yu,
2007). These papers focus on non-incentivized confidence ratings. Kahneman and Tversky (1973) note that correlated
information sources tend to produce consistent signals and may hence lead to an “illusion of validity” (also see Maines,
1990, 1996).

4. Section 4 relates our findings to the experimental literature on learning in networks. Spiegler (2016) uses
Bayesian networks to provide a formal framework for boundedly rational belief formation.

5. Online Appendix D shows that inducing prior beliefs does not affect our findings.
6. Truncation was at μ±2σ =μ±μ in order to avoid negative signals.
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Figure 1

Uncorrelated (left panel) and correlated (right panel) information structure.

Notes: In the left panel, the intermediaries directly transmit the signal they observe from the computer they are connected to. In the right
panel, the intermediaries take the average of the signals of the two computers they are connected with, and transmit this average to the
subjects.

the subject. Thus, subjects received information from computer A as well as from the three
intermediaries. For example, in one experimental task, the signals of computers A through D
were given by 12, 9, 10, and 0, respectively. We will refer to all numbers that are communicated
to subjects as “messages”.

In the Correlated treatment (right panel), the intermediaries 1–3 observed both the signal
of computer A and of computers B–D, respectively, and then reported the average of these two
signals. Again, subjects were provided with information from computer A as well as from the three
intermediaries. Throughout the article, we will also refer to computer A’s signal as common source
signal. Continuing the example from above, each of the three intermediaries took the average of
12 and the corresponding signal of the other computer it communicated with. Thus, computer
A reported 12, intermediary 1 reported 10.5, intermediary 2 reported 11, and intermediary 3
reported 6. In the terminology of Eyster and Rabin (2014), this information structure constitutes
a “shield”. Here, people need to “anti-imitate” because they predominantly see messages larger
than 9, while the majority of signals and the rational belief are smaller than 9. Given that the
common source signal of computer A is known, being rational requires subjects to back out the
underlying independent signals from the messages of the intermediaries, i.e. to invert averages.

Notice that our identification strategy relies solely on the identical informational content
of the two sets of signals. Differences in beliefs between the Correlated and Uncorrelated
condition can only be attributed to variations in the information structure since all other factors are
held constant, including the rational benchmark. Thus, comparing beliefs across Correlated and
Uncorrelated allows us to identify correlation neglect. Crucially, using computers as opposed to
human subjects in the signal-generating process ensures that subjects have complete knowledge
of how their data are being generated, leaving no room for, e.g. beliefs about the rationality
of the intermediaries. Also note that the correlated information structure mirrors the examples
provided in the introduction. For example, one could think of computer A as a press agency
that sells information to various newspapers, which in turn each have an additional independent
information source. Alternatively, in a social learning context, the intermediaries could be viewed
as network members who each received an independent piece of information, yet have all also
talked to a common acquaintance before communicating their opinion.

Upon receiving the information pieces, a subject had five minutes to state a belief. Subjects
completed a total of ten independent belief formation tasks without feedback between tasks.
We used three different randomized orders of tasks, see Online Appendix B. At the end of the
experiment, subjects were paid according to the precision of their belief in one randomly selected
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TABLE 1
Overview of the belief formation tasks

True Computer Intermed. Intermed. Intermed. Intermed. Intermed. Intermed. Rational Correlation
State A 1 uncorr. 2 uncorr. 3 uncorr. 1 corr. 2 corr. 3 corr. belief neglect belief

10 12 9 10 0 10.5 11 6 7.75 9.88
88 122 90 68 5 106 95 64 71.25 96.63
250 179 295 288 277 237 234 228 259.75 219.38
732 565 847 650 1,351 706 608 958 853.25 709.13
1,000 1,110 1,060 629 1,100 1,085 870 1,105 974.75 1,042.38
4,698 1,608 7,240 4,866 5,526 4,424 3,237 3,567 4,810.00 3,209.00
7,338 9,950 1,203 11,322 11,943 5,577 10,636 10,947 8,604.50 9,277.25
10,000 2,543 10,780 6,898 8,708 6,662 4,721 5,626 7,232.25 4,887.63
23,112 15,160 21,806 20,607 47,751 18,483 17,884 31,456 26,331.00 20,745.50
46,422 12,340 32,168 49,841 61,293 22,254 31,091 36,817 38,910.50 25,625.25

Notes: The reports of intermediaries 1 through 3 in the Uncorrelated condition directly reflect the draws of computers
B–D. The rational belief is computed by taking the average of the signals of computers A–D. The correlation neglect belief
is given by the average of the signal of computer A and the reports of intermediaries 2–4 in the Correlated condition.
Note that subjects faced the ten rounds in randomized order, which was identical across treatments. Given that we did
not induce priors, we could select the true states ourselves. This was done in a fashion so as to be able to investigate the
effects of computational complexity, i.e. we implemented true states of different magnitude.

task using a quadratic scoring rule (Selten, 1998).7 Table 1 provides an overview over the ten
tasks. In order to provide an indication of both the direction and the extent of a potential bias, we
also provide the benchmarks of rational beliefs and “full correlation neglect”, which we define to
be the average of the four messages subjects received in the Correlated treatment (see Section 2.2
for details). Throughout, we employ the term “belief” to denote the mean of the belief distribution.

Subjects received extensive written instructions that explained the details of the task and the
incentive structure.8 In particular, the signals of the four computers, how these signals mapped
into the reports of the intermediaries, and the fact that the four computers are of identical quality,
were explained in great detail. For instance, the instructions included the applicable panel from
Figure 1. The instructions also contained an example consisting of four exemplary computer
signals as well as the respective messages of the three intermediaries, given a certain state of
the world. Subjects were provided with a visual representation of an exemplary distribution
function and the concept of unbiasedness was elaborated upon in intuitive terms. A summary of
the instructions was read out aloud. In addition, subjects completed a set of control questions with
a particular focus on the information structure. For example, in both treatments, subjects had to
compute the reports of intermediaries 1 and 2 given exemplary signals of the four computers in
order to make sure that subjects understood the (un)correlated nature of the messages. Subjects
could only participate in the experiment once they had answered all control questions correctly.9

7. Variable earnings in euros were given by π =max[0,10−160×(Belief / True state−1)2].
8. See the Online Supplementary Material for a translation of the instructions and control questions for all

treatments. The instructions can also be accessed at https://sites.google.com/site/benjaminenke/.
9. We can rule out that subjects solved the control questions by trial and error. The quiz was implemented on

two consecutive computer screens that contained three and four questions, respectively. If at least one question was
answered incorrectly, an error message appeared, but subjects were not notified which question(s) they had gotten
wrong. For instance, the computer screen which contained two questions that asked subjects to compute the reports of
the intermediaries given exemplary signal draws (which arguably constitute the key control questions) had a total of
thirteen response options across four questions (i.e. 2×3×4×4=96 combinations of responses), making trial and error
extremely cumbersome. In addition, the BonnEconLab has a control room in which the decision screens of all subjects
can be monitored. From this monitoring, no attempts to solve the control questions by random guessing were detectable.
Furthermore, whenever a subject appeared to have trouble solving the control questions, an experimenter approached the
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At the end of the experiment, we conducted a questionnaire in which we collected information
on sociodemographics. To capture dimensions of cognitive ability, we asked subjects for their high
school GPA (German “Abitur”) and had them solve ten rather difficult IQ test Raven matrices.

Apart from the two baseline Correlated and Uncorrelated treatments, we implemented a
number of straightforward extensions and robustness checks. (i) First, we ran high stakes versions
of the two baseline treatments. These experiments featured the same procedures, except that the
stake size was tripled.10 (ii) Secondly, we re-ran the Correlated treatment using a slightly different
procedure: in treatment Reading time, subjects were free to start the control questions and the
experiment at any point in time after we had distributed the paper-based instructions, which
allows us to measure the time subjects take to read and engage with the instructions before
completing the tasks. (iii) Thirdly, we conducted two robustness treatments in which we slightly
altered certain aspects of the design, including inducing a prior belief (see Online Appendix D
for details). Online Appendix A presents an overview of all treatments that are part of this study,
including extensions and further robustness checks.

2.2. Hypothesis

In the information structure described above, the computers generated four i.i.d signals of the form
sh ∼N (μ,(μ/2)2) (truncated at (0,2μ)) for h∈{1,...,4}. In the Correlated condition, subjects
observed messages s1 and s̃h = (s1 +sh)/2 for h∈{2,3,4}. When prompted to estimate μ, a
rational decision maker would extract the underlying independent signals from the messages s̃h

and compute the mean rational belief as bB =∑4
h=1sh/4, which by design also equals the rational

belief in Uncorrelated.11

Now suppose that the decision maker suffers from correlation neglect, i.e. he does not fully take
into account the extent to which s̃h reflects s1, but rather treats s̃h (to some extent) as independent.
Call such a decision maker naïve and let his degree of naïveté be parameterized by χ ∈[0,1] such
that χ =1 implies full correlation neglect. A naïve agent extracts sh from s̃h according to the rule

ŝh =χ s̃h +(1−χ )sh =sh + 1

2
χ (s1 −sh) (1)

where ŝh for h∈{2,3,4} denotes the agent’s (possibly biased) inference of sh. He thus forms mean
beliefs according to

bCN =
s1 +

3∑
h=1

ŝh

4
= s̄+ 3

8
χ (s1 − s̄−1) (2)

where s̄= (
∑4

h=1sh)/4 and s̄−1 = (
∑4

h=2sh)/3. Thus, a (perhaps partially) naïve belief is given
by the rational belief s̄ plus a belief bias component which depends on the degree of naïveté χ

and the magnitude of the common source signal relative to the other signals.

subject, clarified open questions, and (very rarely) excluded the subject if they did not show an adequate understanding
of the task.

10. Variable earnings in euros were given by π =max[0,30−480×(Belief / True state−1)2].
11. For simplicity, when computing the rational belief, we ignore the truncation in the signal distribution and

assume that subjects hold vague priors. Note that the quantitative errors resulting from this are likely to be very small
in magnitude. Given the information provided to subjects, potential priors are very likely to be weak. Also, the tails
outside the truncation are fairly thin. Moreover, our definition of the rational belief conforms with observed behaviour
in the Uncorrelated treatment, where subjects tended to merely take the average of the four signals. Finally, and most
importantly, regardless of the precise definition of the rational benchmark, beliefs should be identical across treatments.
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Hypothesis. Assuming that χ >0, beliefs in the Correlated treatment exhibit an overshooting
pattern. Given a high common source signal, i.e. s1 > s̄−1, beliefs in the Correlated treatment
are biased upward compared to the Uncorrelated treatment. Conversely, if s1 < s̄−1, beliefs in the
Correlated condition are biased downward.

Intuitively, by partially neglecting the redundancies among the signals, the decision maker
double counts the first signal, so that beliefs are biased in the corresponding direction. At the
same time, note from equation (2) that the beliefs of a naïve agent remain statistically unbiased:
since the first signal is unbiased, any double counting leads to a zero expected error. The upshot
of this is that naïve agents are correct on average, yet exhibit excessive swings in their beliefs.

2.3. Procedural details

The experiments were conducted at the BonnEconLab of the University of Bonn. Subjects were
mostly students from the University of Bonn and were recruited using the online recruitment
system by Greiner (2004). No subject participated in more than one session. The experiment
was run using the experimental software z-Tree (Fischbacher, 2007). A total of 234 subjects
participated in the individual belief formation treatments, 94 in the baseline, 94 in the high
stakes, and 46 in the Reading time treatments. Within the baseline and high stake treatments, the
Correlated and Uncorrelated condition were randomized within session. Sessions lasted about
1.5 hours and average earnings equalled E11.60 in the baseline treatments (≈ USD 15 at the
time) andE21.90 in the high stakes treatments (≈ USD 28). In all treatments, payments included
a E6 show-up fee.

2.4. Results

2.4.1. Beliefs across treatments.

Result 1. In all but one belief formation task, beliefs differ significantly between treatments in
the direction predicted by correlation neglect. This pattern is unaffected by the tripling of the
stake size.

As we will establish formally below, beliefs are strikingly similar between the baseline and the
high stakes treatments. Given the otherwise identical procedures, we hence pool the data across
stake size conditions in all analyses unless noted otherwise.

Table 2 provides summary statistics for all tasks and reveals that in nine out of ten cases do
beliefs in Correlated significantly differ from those in the Uncorrelated treatment. The bias is
very stable across tasks and does not seem to depend on the magnitude of the true state.12 As
a consequence of these biased beliefs, subjects in the baseline condition earned roughly E2.70
less than those in the Uncorrelated group, which amounts to almost 50% of subjects’ average
variable earnings. The earnings difference is significant (p=0.0025, Wilcoxon ranksum test). In
the high stakes treatments, the earnings difference is E5.40 (p=0.0887).

Our experiments provide no feedback and hence little scope for learning. Indeed, in the data,
subjects do not seem to learn to deal with correlations over time (see Online Appendix C.4). It is
doubtful for at least two reasons that subjects would learn within the course of ten experimental
periods even in the presence of feedback. First—given the small sample of four signals—
occasionally the “naïve” (correlation neglect) belief is closer to the true state than the rational

12. Our two robustness treatments replicate these findings, see Online Appendix D for details.
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TABLE 2
Correlation neglect by belief formation task

True Rational Correlation Median belief Median belief Ranksum test
state belief neglect belief Uncorr. treatment Correlated treatment (p-value)

10 7.75 9.88 8 9.1 0.0002
88 71.25 96.63 71.25 87.5 0.0001
250 259.75 219.38 260 250 0.0028
732 853.15 709.13 850 752 0.0018
1,000 974.75 1,042.38 999 1,030 0.0165
4,698 4,810 3,209 4,810 4,505 0.0001
7,338 8,604.5 9,277.25 9,000 9,152.5 0.8317
10,000 7,232.25 4,887.63 7,232 6,200 0.0001
23,112 26,331 20,745.5 25,000 21,506 0.0001
46,422 38,910.5 25,625 38,885.5 30,277 0.0014

Notes: This table presents an overview of beliefs in the Uncorrelated and Correlated treatments across the ten estimation
tasks. The p-values refer to a Wilcoxon ranksum test between beliefs in the Correlated and Uncorrelated conditions. The
data are pooled across the high stakes and baseline treatments. For reference, we also provide the benchmarks of rational
and fully naïve beliefs. See Table 1 for details of the computation of the rational and the correlation neglect benchmarks.
Note that subjects faced the ten tasks in randomized order.

belief (compare Table 1), creating a rather coarse environment for learning. In addition, recall
that the correlation neglect belief is statistically unbiased. Secondly, we can actually derive first
insights into whether and how people learn over time in the presence of feedback from market
experiments that are reported upon in Section 4. These market trading experiments build on our
individual decision-making design and feature the same information structure. Here, subjects
were provided with extensive feedback after each period, including the true state of the world
and losses and profits from trading activities, yet the data reveal little, if any, learning over time.

2.4.2. Heterogeneity. Thus far, we have established a significant amount of correlation
neglect on average. These average patterns may mask a substantial amount of heterogeneity. To
investigate this, we develop a measure of an individual’s belief type. Specifically, our experimental
design in combination with the simple model of belief formation introduced in Section 2.2 allows
us to estimate individual’s naïveté χ . For each belief, we compute the naïveté parameter χ in
equation 2. The median of those naïveté values then serves as estimator for the subject-level
naïveté parameter:

χ̂i ≡med(b̃ j
i )=med

(
8(b j

i − s̄ j)

3(s j
1 − s̄ j

−1)

)

Figure 2 provides kernel density estimates of the distribution of these naïveté parameters for both
the Correlated and the Uncorrelated treatment, pooled across stake size conditions. The plots
reveal that in the Uncorrelated treatment the vast majority of subjects behaves approximately
rational, as indicated by the spike around zero. In the Correlated treatment, on the other hand, we
observe two peaks around the rational benchmark and the full correlation neglect parameter χ =1,
respectively, which suggests the presence of different updating types. In particular, those subjects
that do not succesfully process correlations form beliefs by following a particular simple heuristic
of essentially full neglect.13 Finally, beliefs in Correlated exhibit a much larger heterogeneity
than those in Uncorrelated: in eight out of the ten belief formation tasks, the within-treatment
belief variance is statistically significantly higher in the Correlated condition (p<0.05).

13. Online Appendix C.3 analyses the stability of the individual-level naïveté parameters across tasks.
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Figure 2

Kernel density estimates of median naïveté parameters.

Note: The two kernels depict the distributions of naïveté in the Correlated and Uncorrelated conditions, pooled across the high stakes and
baseline treatments.

Our procedure of computing an individual’s type only makes use of the first moment
of the distribution of each subject’s beliefs, and hence ignores the variability in beliefs. In
Online Appendix C.5, we pursue a different approach by estimating the belief formation rule
proposed in Section 2.2 through a finite mixture model. The picture resulting from these
estimations is very similar to what can be inferred from Figure 2.

2.4.3. Cognitive ability and cognitive effort. Before we develop a structured analysis
of mechanisms in the next section, we conclude the baseline analysis by studying the roles of
cognitive ability and cognitive effort in generating correlation neglect. Columns (1) and (2) of
Table 3 provide evidence for the treatment difference in beliefs, again pooling across the baseline
and high stakes conditions. Here, the dependent variable is the full set of ten beliefs, expressed
in terms of χ (equation 2).

The remainder of the table restricts attention to the Correlated treatments. Columns (3) and
(6) show that correlation neglect is significantly associated with cognitive skills, as derived from
participants’ high school GPA and their score on a post-experimental Raven IQ test. Columns
(4) and (6) through (10) investigate the relationship between correlation neglect and subjects’
response times, which are commonly used as proxy for cognitive effort (Rubinstein, 2007, 2016).
Indeed, it is conceivable that subjects face prohibitively high cognitive costs in developing or
executing a solution strategy (Caplin et al., 2011; Gabaix, 2014) and hence opt for a simplifying
heuristic, perhaps akin to Kahneman’s (2011) system 1 versus 2 terminology.14 The standard
approach in the literature is to record the time subjects take to complete an experimental task,
after they have read and contemplated about the experimental instructions. However, it is ex
ante unclear at which point during the experiment subjects develop their solution strategy. As
explained in Section 2.1, we implemented a follow-up treatment called Reading Time to explicitly

14. In addition, subjects might exhibit self-serving biases regarding their effort level: in principle, subjects might
only be able to rationalize to themselves not to exert effort to develop rational beliefs if the underlying problem is
sufficiently complex. For recent evidence on such “wiggling” behaviour see, e.g. Dana et al. (2007), Haisley and Weber
(2010), and Exley (2015).
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TABLE 3
Heterogeneity in correlation neglect

Dependent variable:

Naiveté χ Response time

Full sample Correlated treatments

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0 if Uncorrelated, 1 if Correlated 0.38∗∗∗ 0.35∗∗∗
(0.06) (0.06)

Cognitive skills −0.15∗∗∗ −0.27∗∗∗ −0.27∗∗∗ 0.20∗∗ 0.24∗
(0.03) (0.05) (0.06) (0.10) (0.14)

Response time (in minutes) −0.15∗∗∗ −0.13∗∗∗ −0.10∗
(0.04) (0.04) (0.05)

0 if Baseline, 1 if High stakes −0.029 −0.0093 0.35∗ 0.42∗∗
(0.10) (0.09) (0.20) (0.19)

Reading time (in minutes) −0.017 −0.0026
(0.03) (0.03)

Constant 0.24∗∗∗ 0.31 0.66∗∗∗ 0.85∗∗∗ 0.63∗∗∗ 0.58∗ 0.50 −0.17 1.43∗∗∗ 0.093
(0.03) (0.20) (0.05) (0.07) (0.07) (0.35) (0.33) (0.92) (0.13) (1.10)

Additional controls No Yes No No No Yes No Yes No Yes

Observations 1799 1785 889 889 889 875 386 382 889 875
R2 0.06 0.13 0.06 0.05 0.00 0.15 0.00 0.14 0.02 0.15

Notes: OLS estimates, robust standard errors (clustered at subject level) in parentheses. The table analyses the determinants
and correlates of subjects’ naïveté as implied in each of the ten beliefs. In columns (1)–(2), observations include all subjects
from the Correlated and Uncorrelated treatments, both baseline and high stakes. In columns (3)–(6) as well as (9)–(10),
the sample includes all subjects from the baseline and high stakes Correlated conditions. Columns (7) and (8) analyse
treatment Reading time. Additional controls include age, gender, monthly income, marital status fixed effects, and task
fixed effects. Cognitive skills are the z-score of the unweighted average of the z-scores of high school GPA and a Raven
test score. All regressions exclude extreme outliers with |χ j

i |>3, but all results are robust to including these observations
when employing median regressions. ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01

measure not only standard response times, but also the time subjects take to read the instructions.
In sum, we have access to a standard measure of response time for the baseline and high stakes
Correlated and the Reading Time treatments, as well as to the time subjects took to read the
instructions in Reading Time.

Turning to the analysis, columns (4)–(8) document that both of our proxies for cognitive effort
(reading and response times) are only weakly related to correlation neglect. First, in the baseline
treatments (analysed in columns (4) and (6)), a longer time spent on the problem is significantly
correlated with less correlation neglect, but the quantitative magnitude of this relationship is small:
interpreted causally, the OLS coefficients suggest that response times would have to increase by
about four minutes to move a fully naïve subject to fully rational beliefs. Note that this is a very
implausible magnitude: the average response time of approximately rational subjects is just 2.2
minutes, and increasing the naïve types’ response times by four minutes corresponds to an increase
of about 3.5 standard deviations in the sample.15 While the within-treatment relationship between
response times and correlation neglect is correlational in nature, columns (5) and (6) document
that the exogenous threefold increase in financial stakes had no effect on correlation neglect. This
is noteworthy since the tripling of the stake size did significantly affect cognitive effort as proxied
by response times [compare columns (9)–(10)]. That is, tripling the stakes increases cognitive
effort, but does not affect the presence of the bias.

15. In addition, the correlation between response times and naïveté might be purely mechanical: conditional on
having developed different solution strategies, rational subjects ought to take longer to solve the problem than naïfs
because computing rational beliefs requires additional mathematical steps.
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TABLE 4
Overview of main treatments

Treatment Description Purpose

Baseline correlated Four Computers, three Intermediaries Establish correlation neglect
Baseline uncorrelated Four Computers, three Intermediaries Establish correlation neglect
High stakes corr. & uncorr.; Reading time Four Computers, three Intermediaries Role of cognitive effort
Reduced complexity correlated Two Computers, one Intermediary Importance of complexity
Reduced complexity uncorrelated Two Computers, one Intermediary Importance of complexity
Many Stimuli Two Computers, three Intermediaries Importance of size of information structure
Alternating Four Computers, three Intermediaries Importance of conceptual aspect

Finally, columns (7) and (8) show that the relationship between correlation neglect and
subjects’ reading times is also weak. Neither in unconditional nor in conditional regressions
is reading time significantly associated with the bias.16

In sum, (i) neglect types do not take less time to read the instructions; (ii) they take only
slightly less time to work on the specific tasks; and (iii) exogenous increases in effort do not
translate into better beliefs. While mostly descriptive in nature, these various pieces of evidence
are suggestive that correlation neglect is not driven by laziness.

3. MECHANISMS AND DEBIASING

We investigate the mechanisms behind correlation neglect through a series of treatment variations,
as summarized in Table 4.17 We will refer back to this table as we move along. Table 6 in the
Online Appendix provides a complete list of all treatments that are part of this study, including
robustness checks and extensions.

3.1. The role of complexity

A common theme in the literature is that the degree of complexity of a decision problem exerts
a substantial effect on the existence and magnitude of cognitive biases (e.g. Charness and Levin,
2009). To examine the effects of complexity on correlation neglect, we implemented a set of low-
complexity treatments that were identical to the baseline conditions, except that we reduced the
number of computers and intermediaries. In these low-complexity conditions, only two computers
(A and B) generated unbiased i.i.d signals about the state μ, and only one intermediary was present
(see Figure 3). In both treatments, subjects were provided with information from computer A as
well as from the intermediary. In the Low Complexity Uncorrelated treatment, the intermediary
directly transmitted the signal of computer B. In the Low Complexity Correlated treatment,
the intermediary reported the average of the signals of computers A and B. Thus, the type of
correlation is identical to the baseline condition and requires the same conceptual understanding
of double counting, yet the complexity of the environment is severely reduced (see also Table 4).
We implemented the same ten belief formation tasks as in the baseline treatments using the

16. The R2 in most of these regressions is fairly small (similarly so in Table 5), which directly results from the large
amount of heterogeneity in the data, both across subjects and within subjects across experimental tasks.

17. Online Appendix E.2 investigates whether correlation neglect is driven by a simple “face value” heuristic. This
hypothesis posits that people never think through the process generating their information and instead treat each number
as if it were an unmanipulated independent signal realization, regardless of whether the signals are correlated or distorted
in other ways. We design two treatments to evaluate the empirical validity of such an extreme heuristic. The results reject
a face value heuristic, and correlation neglect persists even when face value bias makes opposite predictions.
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Figure 3

Low complexity uncorrelated (left panel) and correlated (right panel) information structure.

Notes: In the left panel, the intermediary directly transmit the signal from computer B. In the right panel, the intermediary takes the average
of the signals of A and B, and transmits this average to the subjects.

same incentive structure, instructions, and procedures. In total, 94 subjects participated in these
treatments, which lasted 80 minutes on average and yielded average earnings of E11.60.

Result 2. An extreme reduction in the environment’s complexity eliminates the bias.

Consistent with previous documentations of the role of complexity in different contexts, we
find that correlation neglect disappears in our low-complexity treatments. Columns (1)–(2) of
Table 5 present the results of OLS regressions of the naïveté implied in each belief of a given
subject on a correlated treatment dummy.18 While the point estimate is negative, it is very far from
statistically significant. This finding is noteworthy because it shows that in (admittedly extremely)
simple informational environments subjects do grasp the implications of correlated information
structures; thus, correlation neglect depends not only on subject’s updating type, but also on the
properties of the informational environment.19

At the same time, in terms of pinning down the precise mechanisms that generate correlation
neglect, these reduced complexity treatments do not provide a definitive answer because they
manipulate a number of features of the experimental design at once, relative to the baseline
conditions. To organize our discussion of the mechanisms underlying correlation neglect (and its
dependence on complexity), we adopt a simple qualitative framework that clarifies the cognitive
steps required to develop rational beliefs.

3.2. Mechanisms: a framework

Arguably, solving our experimental task requires three steps of reasoning:

(1) Notice the problem: subjects need to notice the presence of the correlation among signals
and realize that averaging the correlated messages introduces a double counting problem.

(2) Understand how to solve the problem: subjects need to think through the problem and
understand that it can be solved by backing out and averaging the underlying independent
signals.

(3) Solve the problem mathematically: subjects need to be able and willing to solve the
problem mathematically by setting up the corresponding equations and executing them.

18. The implied χ
j
i are computed using the same procedure across all low-complexity conditions:

χ̂
j
i =χ

j
i = sj

1 +sj
2

2
+ 1

4
(sj

1 −sj
2)

19. Note, however, that our low-complexity environment is very simplistic: since we did not induce priors, the
report of the intermediary in the correlated treatment equals the rational belief, rendering actual computations by the
subjects unnecessary.
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TABLE 5
Mechanisms

Dependent variable: Naiveté χ

Low complexity Corr. & Alternating

(1) (2) (3) (4) (5) (6)

0 if Low complexity uncorr., 1 if Low complexity corr. −0.14 −0.10
(0.10) (0.08)

0 if Low complexity corr., 1 if Many Stimuli 0.34∗∗∗ 0.33∗∗∗
(0.11) (0.11)

0 if Correlated, 1 if Alternating −0.25∗∗∗ −0.21∗∗∗
(0.08) (0.08)

Constant 0.15∗∗∗ 0.18 0.0090 −0.55 0.54∗∗∗ 0.44∗∗
(0.04) (0.31) (0.09) (0.54) (0.05) (0.19)

Additional controls No Yes No Yes No Yes

Observations 884 874 891 881 681 674
R2 0.01 0.05 0.03 0.06 0.02 0.12

OLS estimates, robust standard errors (clustered at the subject level) in parentheses. The table analyses the mechanisms
behind correlation neglect. The dependent variable is always subjects’ naïveté as implied in a given belief. In columns
(1)–(2), observations include all beliefs of subjects in the Low complexity correlated and Low complexity uncorrelated
treatments. In columns (3)–(4), the sample includes all beliefs of subjects from the Low complexity correlated and Many
Stimuli conditions. In columns (5)–(6), the sample includes subjects in the Correlated conditions (both baseline and high
stakes) as well as in Alternating, where the set of beliefs is restricted to those tasks in which the Alternating treatment
featured a correlated information structure. Additional controls include age, gender, cognitive skills, monthly income,
marital status fixed effects, and task fixed effects. All regressions exclude extreme outliers with |χ j

i |>3, but all results
are robust to including these observations when employing median regressions. ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01

All of these steps are potentially affected by our complexity manipulation. For example, the
number of mathematical steps that are required to solve the problem differs across the low-
complexity and baseline conditions. Likewise, noticing and thinking through the double counting
problem might be harder in our baseline treatments because the size of the information structure—
captured by the number of signals and messages—increases.

In what follows, we narrow in on the mechanism. For this purpose, we follow a long line of
work in cognitive psychology that divides mental operations into a conceptual and a mathematical
or computational aspect.20 In the conceptual part (steps 1–2 from above), subjects need to develop
a solution strategy, while the mathematical part (step 3) requires them to execute that strategy.
We focus our efforts on differentiating the steps of developing and properly executing a strategy.

For this purpose, we develop two treatment variations. The key idea behind both treatments is
to hold the mathematical steps required to correctly solve the problem constant, yet manipulate the
way people approach and think about the problem. For this purpose, we apply a basic idea reported
in DellaVigna (2009) to our context, i.e. that the probability of attending to and understanding
complex issues—here, the correlation—is a function of (at least) two aspects of the environment.
First, people’s propensity to notice and think through correlations might negatively depend on
the size of the information structure, i.e. the total number of stimuli as proxy for the overall
complexity of the problem. In particular, it is conceivable that a “bigger” problem either makes
it harder for subjects to identify the double counting problem or makes it less obvious how to
solve it. Secondly, attending to and understanding the double counting problem might be easier

20. For example, standard treatments of the computational theory of mind assume a distinction between
representations and operations on those representations (e.g. Thagard, 1996; Horst, 2011).
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if people are nudged to focus on and think about the correlation and the underlying independent
signals.21

We test these two predictions by increasing the size of the information structure (Section 3.3.1)
and nudging subjects to pay special attention to the double counting problem and the underlying
independent signals (Section 3.3.2), respectively, while holding the computational steps constant.

3.3. Conceptual versus mathematical problems

3.3.1. Complexity and the Size of the Information Structure. Recall that the baseline
and low-complexity environments differed not only in the size of the information structure per se,
but also in the number of mathematical steps required to solve the problem. To isolate the pure
effect of increasing the size (and hence the conceptual difficulty) of the problem, we designed
a variation of the Low Complexity Correlated treatment. In treatment Many Stimuli, depicted
in the right panel of Figure 4, again only two computers generated unbiased iid signals about
the state of the world μ, but three intermediaries communicated with subjects. Intermediary 1
observed the signals of computers A and B and transmitted the average to subjects. Intermediary
2 observed the signal of computer A and reported it to subjects. Intermediary 3 observed the
signals of A and B and transmitted (3/4×A+1/4×B) to subjects. Taken together, subjects
observed the signal of computer A twice, and also received two different linear combinations of
the signals of A and B. Thus, this treatment manipulates the size of the information structure
(via the number of messages), but requires exactly the same mathematical steps as those in Low
Complexity Correlated: subjects could either simply copy the message of Intermediary 1, or invert
the message of Intermediary 1 and then compute the average of A and B.

Forty-seven subjects participated in Many Stimuli, which lasted 80 minutes on average and
yielded average earnings of E11.10.

Result 3. Holding fixed the mathematical steps required to solve the updating problem, a larger
number of messages induces more correlation neglect.

Columns (3)–(4) of Table 5 report upon OLS regressions of the naïveté implied in subjects’
ten beliefs on a treatment dummy which assumes a value of zero if subjects are in the Low
Complexity Correlated condition and of one if participants are in Many Stimuli. The statistically
significant point estimate suggests that the increase in the number of messages alone increases
correlation neglect by about 0.34 units of naïveté (χ ) on average, an effect size that is similar to
our main treatment effect in the baseline conditions (0.38 units of χ , see column (1) of Table 3).
Analogous regressions show that beliefs in Many Stimuli also significantly differ from those in
Low Complexity Uncorrelated (p<0.05).

These results suggest that it is easier for subjects to notice and think through the correlated
information structue when the size of the updating problem (as captured by the number of
messages) is smaller. Arguably, this finding (i) provides our first piece of evidence that correlation
neglect is to a large extent driven by conceptual as opposed to mathematical problems, but also (ii)
suggests that people’s propensity to notice and understand the correlation depends upon features
of the environment, hence rationalizing the difference between the results in our baseline and
low-complexity experiments.

21. Online Appendix E.1 presents a simple model in the spirit of DellaVigna (2009) that formalizes these ideas.
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Figure 4

Information structure in Low Complexity Correlated (left panel) and Many Stimuli (right panel).

Notes: In the left panel, the intermediary directly transmit the signal from computer B. In the right panel, intermediary 1 observes the
signals of computers A and B and transmits the average to subjects. Intermediary 2 observes the signal of computer A and reports it to
subjects. Intermediary 3 observes the signals of A and B and transmits (3/4×A+1/4×B).

3.3.2. Nudge evidence. We proceed by testing the idea that drawing subjects’ attention to
the double counting problem and the underlying independent signals may help them in noticing
the correlation and understanding how to cope with it. To achieve this goal while holding the
mathematical complexity of the problem constant, treatment Alternating (see Table 4) varies the
nature of the information structure (correlated or uncorrelated) within subjects between tasks.
The basic design of the Alternating treatment (e.g. the number of computers and intermediaries)
is identical to the baseline conditions. The key difference is that the instructions for this treatment
introduced both the correlated and the uncorrelated information structure from our baseline design,
which were framed as “Scenario I” and “Scenario II”, respectively. Subjects were told that in
some tasks they would receive information according to Scenario I and in some tasks according
to Scenario II and that, in each task, they would be informed of the scenario before seeing the
messages of computer A and of the intermediaries. Consequently, subjects solved five tasks
with correlated and five with uncorrelated information. The instructions emphasized that subjects
would have to pay special attention to the prevailing scenario. In addition, the control questions in
this treatment required subjects to compute the messages of intermediaries 1 and 2 for exemplary
computer signals for both the correlated and the uncorrelated scenario, which presumably further
increased the salience of the workings of the intermediaries.

Arguably, alternating the correlated and uncorrelated information structure might manipulate
both steps 1 and 2 of our framework above, i.e. (i) this treatment might make it easier for subjects
to notice the double counting problem, but (ii) it may also help subjects understand that this
problem can be solved by backing out the underlying independent signals because it makes the
role of the underlying signals more salient. At the same time, the treatment does not provide
any hints on how to mathematically compute the correct solution and hence leaves step 3 of the
framework unaffected. Forty-seven subjects took part in the Alternating treatment and earned
E13.10 on average.

Result 4. Exogenously increasing subjects’ focus on the correlation and the underlying
independent signals reduces the bias.

Columns (5)–(6) of Table 5 present the regression results. Here, we regress the naïveté implied
in beliefs in Correlated and Alternating on a treatment dummy. The point estimate indicates
that shifting subjects’ focus reduces correlation neglect by 0.25 units of naïveté. To provide a
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complementary perspective, Online Appendix E.3 provides kernel density estimates of (median)
beliefs in Alternating.

In sum, if subjects are nudged to focus on the correlation and the underlying independent
signals, the bias is substantially reduced. Arguably, this treatment also provides evidence that
people are in principle well capable of and sufficiently motivated to perform the calculations
that are needed to develop rational beliefs—after all, treatment Alternating manipulates neither
subjects’ mathematical skills nor their incentives to solve the problem.22

3.4. Discussion

The analysis of mechanisms has revealed that people do not struggle so much with the mathematics
involved in solving our experimental task, but more with the conceptual problem of noticing and
thinking through the correlation. In addition, we have provided causal evidence that people are
more likely to adequately process correlations if the information structure is “smaller”, hence
indicating the importance of complexity for noticing and understanding correlations. While the
general idea behind these comparative statics effects may well extend to different environments,
it should be acknowledged that the results are conditional on this particular type of (relatively
simple) correlation.

The distinction between developing and executing a solution strategy appears potentially
important for both policy and economic theory. For example, if people’s shortcomings in
processing correlations were closely linked to mathematical problems, then an obvious policy
implication is to teach more basic math. On the other hand, if people’s problems were
predominantly conceptual in nature, meaning that they fail to notice or think through the
correlations, then policy remedies may focus on making people aware of the correlation and
nudging them towards the underlying independent signals. Crucially, in contrast to teaching math,
such a policy will likely be context-specific: pointing people to the presence of correlations in
one context would not necessarily help them in another context. In addition, from the perspective
of theory, the distinction between developing and executing a strategy is potentially important
as the former appears linked to having a wrong subjective model of the environment, while the
latter could perhaps be formalized by modelling cognitive effort costs.

While the distinction between the conceptual and mathematical steps in our framework appears
to be of direct economic relevance, this is arguably less the case for the distinction between steps
1 and 2. From the viewpoint of policy, treatment Alternating has shown that making the double
counting problem and the underlying signals very salient largely eliminates the bias—whether
this is the case because people do not even notice the double counting problem to begin with
or do not understand how to solve it seems rather subtle and likely less relevant in practice. For
example, in the context of the news media, a policy intervention that reminds people of the fact
that many news articles rely on the same press agencies or journalists, is likely to manipulate
both people’s awareness of the correlation, and their propensity to develop the correct solution
strategy. Likewise, it is difficult to foresee whether the rather subtle distinction between steps 1
and 2 could be productive for economic theory, especially given that both steps are related to the

22. That subjects appear to be sufficiently motivated confirms findings from Section 2.4.3 about the role of cognitive
effort. Online Appendix E.4 presents the results from two further treatment variations that lend further credence to the
insight that people struggle much more with noticing the double counting problem in the first place, rather than solving it
mathematically. For example, when subjects receive the hint “…Think carefully about what the intermediaries do! What
does that imply for the estimates of the intermediaries?”, they notice and solve the double counting problem in a very
similar fashion as in Alternating.
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conceptual difficulty of processing correlations. For these reasons, we refrain from attempting to
further disentangle steps 1 and 2 from our motivating framework.

4. EXTENSIONS AND CONCLUDING REMARKS

Using experiments with more than 1,000 subjects, this article provides clean evidence for
people’s tendency to neglect correlations in information sources when forming beliefs and the
corresponding mechanisms. While we deliberately designed a tightly controlled and abstract
information structure to obtain a clean view on the cognitive bias, it would be interesting to extend
the analysis to more naturalistic information. In Online Appendix G, we explore one possible
avenue by confronting subjects with real newspaper reports covering correlated information. We
make use of a naturally occurring informational redundancy in professional GDP forecasts that
arose because a German research institute contributed to a joint forecast, but also issued a separate
(different) forecast at the same time. Again, the incentivized beliefs subjects state after they have
read these correlated forecasts are indicative of correlation neglect.

Correlation neglect is likely to have implications in applied settings such as inter-
active social network or herding setups. In this respect, our findings contribute to an
active empirical literature on naïve social learning, which has often identified updating
patterns consistent with correlation neglect (Brandts et al., 2015; Chandrasekhar et al., 2016;
Eyster et al., 2016; Grimm and Mengel, 2016).23 Similarly, our paper also relates to work on
financial decision-making in the presence of correlated asset returns (Kallir and Sonsino, 2010;
Eyster and Weizsäcker, 2011). What sets us apart from all of these contributions is our focus on
a simple and completely transparent information structure as well as a study of the underlying
mechanisms. For example, our updating environment is stripped of the complexities that pervade
experiments of social interactions in networks, such as lack of common knowledge of rationality,
complicated updating processes after several rounds of communication, or the need to evaluate
“indirect” information of uncertain origin (Golub and Jackson, 2010). Also, the correlation
structure in our setup is very simple compared to the typically non-trivial correlations among
financial assets. By documenting a “pure” form of correlation neglect, our findings arguably
highlight the potential importance of this bias in a wide range of applied settings. In addition,
our article provides evidence on the mechanisms underlying correlation neglect, and how the
presence of the bias depends on features of the environment.

Markets are an additional obvious candidate to study correlation neglect. For instance, simple
market interaction might already suffice to debias the neglect types: first, subjects could learn from
feedback including profits and losses from trading; secondly, subjects might learn by observing
others trade on evidently different beliefs. Alternatively or in addition, the correlation neglect
types might be less certain about their beliefs than the rational types and hence engage in only
moderate trading. If so, this would imply that despite the heterogeneity in updating types, the
marginal (price-setting) trader would be rational. Online Appendix F reports upon experiments
in which we embedded our correlated information structure into a standard continuous double
auction in which subjects traded financial assets of ex ante unknown value. In these experiments,
subjects received extensive feedback after each trading round, including the true state from the
past period and the resulting profits and losses from trading. In addition, subjects could observe all
bids from all market participants, which provided further opportunities to learn. The results show
that experimental market interaction does not induce correlation neglect types to learn: in periods

23. Other studies, such as the ones by Corazzini et al. (2012), Möbius et al. (2013), and Weizsäcker (2010) find
belief patterns that are less consistent with correlation neglect.
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in which correlation neglect leads to overly optimistic beliefs, market prices in the correlated
treatment are too high, and when neglecting correlations implies overpessimism, market prices
are too low. In addition, within the correlated market treatment, subjects’ propensity to ignore
correlations predicts both individual trading behaviour and the degree of price distortions. In sum,
correlation neglect also has predictable effects in simple experimental markets.
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