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Abstract

The most widely-studied and robust deviations of intertemporal choice behavior
from the exponential discounted utility paradigm are typically conceptualized as
resulting from non-standard preferences. We experimentally study the hypothesis
that many of these patterns are instead largely driven by noisy cognitive processes,
which lead people to implicitly treat different time delays alike to some degree. In
our experiments, we measure cognitive uncertainty, which captures people’s aware-
ness of their noisiness. In the data, cognitive uncertainty strongly predicts various
core empirical regularities, such as why people often appear very impatient over
short horizons, why per-period impatience is smaller over long than over short hori-
zons, why discounting is hyperbolic even when the present is not involved, and
why choices violate transitivity. An account of noisy cognition also makes two new
predictions, which we test and confirm: discounting is more hyperbolic when a de-
cision is more complex, and cognitive uncertainty is strongly predictive of following
expert advice.
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1 Introduction

Many important economic decisions such as those related to education, investment and
saving have an intertemporal component, which motivated an extensive research pro-
gram on intertemporal decision-making. A main result of this program is a set of empir-
ical regularities that are inconsistent with the exponential discounted utility paradigm.
As highlighted by the recent reviews of Ericson and Laibson (2019), Cohen et al. (2020)
and Lipman and Pesendorfer (2013), a famous regularity is that people behave more
impatiently in decisions that affect outcomes in the present than they do in decisions
that only involve the future (sometimes paired with commitment demand). In response
to this observation, the literature developed a broad class of models that Ericson and
Laibson (2019) summarize as “present-focused preferences,” which include models of
present-biased preferences (Laibson, 1997) and temptation (Gul and Pesendorfer, 2001;
Dekel et al., 2009). However, Cohen et al. (2020) and Ericson and Laibson (2019) em-
phasize that there are other widely-studied and economically no less important key
empirical regularities that cannot be neatly explained with present-focused preferences
alone. These regularities pertain to how people treat time delays of different lengths.1

First, as visualized in Panel A of Figure 1, people often act in very impatient ways
in decisions over relatively short horizons, yet appear considerably less impatient over
longer horizons. As a result, people’s implied per-period impatience strongly decreases
in the length of the delay (Thaler, 1981; Loewenstein and Prelec, 1992), a behavior that
looks like people treat different delays as more similar than they really are. This extreme
flattening out of observed discounting for long horizons is not predicted by models of
present bias (Laibson, 1997). Second, as shown in Panel B of Figure 1, an inelasticity of
discounting with respect to the delay is also found when the earlier date is in the future,
again at odds with a pure account of present-focused preferences (Kable and Glimcher,
2010).2 Third, experimental studies robustly identify a transitivity violation called sub-
additivity, according to which people appear more patient in tradeoffs over one long
interval than in choices where that same interval is partitioned into two sub-intervals
(Read, 2001). Fourth, in addition to the regularities of hyperbolicity and subadditiv-
ity highlighted by Cohen et al. (2020), the literature has repeatedly documented that
an experimentally-induced decrease in the availability of cognitive resources typically
makes people less patient over short horizons but more patient over long ones (Ebert,
2001; Ebert and Prelec, 2007; Deck and Jahedi, 2015; Imas et al., 2021).

These four regularities appear to share the commonality that they reflect an insensi-

1As discussed in footnote 4, Cohen et al. (2020) also highlight a separate set of phenomena that are
related to the structure of payouts rather than the structure of time delays. We focus on the latter.

2The first two patterns are also jointly referred to as the common difference effect or strongly dimin-
ishing impatience (Chakraborty et al., 2020).
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Figure 1: The figure shows the discounted value of $100 to be received with different time delays, parti-
tioned by whether the early payment date is today (Panel A) or in the future (Panel B). The black markers
indicate average behavior in our experiments described in Section 3.

tivity of decisions to the delay. A dominant approach in the behavioral economics liter-
ature has been to conceptualize this pattern by modifying people’s discount functions.
Either implicitly or explicitly, these approaches take the view that “anomalous” decisions
are generated by “anomalous” preferences. However, as is well-known, the leading mod-
els that formalize non-standard preferences cannot account for all of the regularities
summarized above. Moreover, the functional forms that generally fit experimental data
best – the generalized hyperbola and its variants (e.g., Mazur, 1987; Loewenstein and
Prelec, 1992; Kable and Glimcher, 2010) – were openly reverse-engineered to match pat-
terns such as diminishing impatience, rather than developed because there was direct
evidence for the existence of corresponding preferences. As a result, popular functional
forms fit the data well in a reduced-form sense but do not provide micro-founded models
of behavior, and do not explain why intertemporal decisions often vary as a function of
cognitive states and environmental factors.

This paper experimentally studies the hypothesis that the empirical regularities, and
intertemporal choice more generally, are to a large extent driven by noisy cognitive pro-
cesses: people cognitively struggle with determining how much they value payments
or consumption across different points in time. Our experimental analysis is organized
around a discussion of theoretical models that explore how different versions of noise
affect intertemporal decisions. For example, in Bayesian noisy cognition models (Wood-
ford, 2020), the decision-maker may exhibit cognitive noise in determining how much
a future payment is worth to him today. Such cognitive noise could have multiple ori-
gins, such as that the decision-maker does not know his true discount factor, that he
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has imperfect time perception, or that he struggles with integrating the time delays
with his discount factor. In Bayesian noisy cognition models, the existence of cognitive
noise induces the decision-maker to regress to (or anchor on) a cognitive default deci-
sion, such that the average observed decision is given by a convex combination of the
true discounted-utility maximizing decision and the cognitive default. As a result, the
decision-maker effectively treats different time delays as more similar to each other than
they really are, which generates the aforementioned empirical regularities, including di-
minishing impatience and subadditivity. Similar predictions can emerge from a random
response model in which the decision-maker probabilistically maximizes or chooses ran-
domly. We discuss how random utility models and other cognitive noise models in the
literature share some, but not all, of these implications.

Our main contribution is to experimentally test to what degree noisy cognition actu-
ally explains discounting behavior. To make the magnitude of cognitive noise visible, we
leverage the insight that people often have some awareness of how noisy their decision
process is. Specifically, our experiments measure people’s cognitive uncertainty, which
refers to a decision-maker’s subjective uncertainty about their utility-maximizing deci-
sion (Enke and Graeber, 2022). Cognitive uncertainty captures a subject’s composite
awareness of cognitive noise in the determination of the decision and hence potentially
includes a variety of aspects, such as uncertainty about one’s discount factor or compu-
tational difficulties that arise in integrating the discount factor with the time delay.

We elicit intertemporal decisions in three different ways to show robustness. In a first
paradigm, experimental participants make decisions in standard multiple price lists to
trade off different UberEats vouchers that can be used for restaurant delivery and take-
out. These vouchers are time-dated, such that actual consumption only occurs in a pre-
specified time period. In a second, complementary paradigm, we implement analogous
decisions, except that these are defined over hypothetical monetary amounts. Third, we
replicate our findings using a direct elicitation technique that does not rely on a visual
price list representation of choice options. We discuss in detail how our study design
relates to discussions about experimental intertemporal choice methodology, including
reliability and fungibility of payments.

After each decision, we elicit cognitive uncertainty as a person’s subjective probabil-
ity that their stated valuation range of a larger-later payment (the switching interval
in a choice list) actually contains their true valuation of the later payment. We inter-
pret this measure as capturing the participant’s posterior uncertainty about their utility-
maximizing decision, after a “cognitive signal” has been generated through deliberation.
We validate our measure with incentivized choice data, by showing that that cognitive
uncertainty is significantly correlated with across-trial variability in responses to repeti-
tions of the same choice problem.
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The main insight of our analysis, from which many of our results follow, is that
cognitive uncertainty is strongly related to whether people’s discounting looks like they
treat different time delays alike to some degree. As a result of this compression effect,
more cognitively uncertain decisions look like they reflect higher impatience over short
horizons but lower impatience over very long ones (a “flipping” property).

Both the intensive and the extensive margin of cognitive uncertainty predict behav-
ior. Indeed, the link between cognitive uncertainty and compression effects is strictly
monotonic: people in the lowest cognitive uncertainty quartile respond more to time
delays than people in the second quartile, who in turn respond more than those in the
third quartile, and so on. This shows that the magnitude of cognitive uncertainty con-
tains much information even away from the rational benchmark of zero, and that strictly
positive cognitive uncertainty is not just driven by random measurement error.

Because cognitive uncertainty predicts to what extent people’s decisions look like
they treat different delays alike, it is strongly predictive of the empirical regularities men-
tioned in the motivating discussion: (i) short-run impatience and decreasing impatience
(hyperbolicity) when the present is involved; (ii) short-run impatience and hyperbolic
discounting when the present is not involved (such that notions of present bias do not
apply); and (iii) the transitivity violation of subadditivity. All of these correlations are
quantitatively large. For instance, the magnitude of decreasing impatience is five times
larger with positive as opposed to zero cognitive uncertainty.

Our motivating hypothesis was that cognitive noisiness leads to an inelasticity of
decisions with respect to the length of the time delay. Thus, as a placebo exercise, we
pre-registered the prediction that cognitive uncertainty is unrelated to front-end delay
effects, which refer to the pattern that people tend to be more impatient about a given
delay that begins now rather than in the future. This prediction directly follows from our
main hypothesis (and a simple model) because the length of a time delay is held constant
in front-end delay experiments. In the data, we indeed see that cognitive uncertainty
and front-end delay effects are uncorrelated. These results suggest that cognitive noise
and present bias are complementary objects that explain different phenomena.

To complement our correlational analysis that rests on the measurement of cognitive
uncertainty, we implement additional treatments in which we exogenously manipulate
cognitive noise and trace effects on discounting behavior. To do so, we increase the com-
plexity of the choice tasks by embedding a math problem into them. This complexity
manipulation hones in on one specific source of cognitive noise among the different
ones mentioned above. As predicted, we find that increased complexity (i) significantly
increases cognitive uncertainty and (ii) leads to substantially more pronounced hyper-
bolic discounting. We interpret these patterns as saying that the hyperbolicity of ob-
served discounting strongly depends on noisy cognition, which in turn partly depends
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on complexity.
To examine the quantitative importance of noisy cognition for predicting behavior,

we estimate a cognitive noise model. In these estimations, allowing for cognitive uncer-
tainty produces an increase in model fit that is quantitatively substantial. For example,
relative to an exponential discounted utility model, the increase in fit is twice as large
as the increase resulting from allowing for present bias.

All experiments summarized so far examine people’s decision making when they
are forced into making a decision. Yet, an account of cognitive noise in combination with
awareness thereof (cognitive uncertainty) naturally also predicts that people might pre-
fer not to make a decision themselves and instead follow expert advice. In contrast, in
pure preferences-based accounts, people may behave in impatient ways, but they do not
worry that the decision reflects a mistake. We find that cognitively uncertain participants
are twice as likely to revise a previously-taken decision to follow the advice of profes-
sional economists. We interpret these patterns as suggesting that an account of cognitive
noise and cognitive uncertainty not only helps in understanding which decisions people
take but also whether they are likely to take a decision on their own in the first place.

In summary, our experiments document that the measurement of noisy cognition
through cognitive uncertainty (i) sheds light on various core intertemporal choice regu-
larities; (ii) facilitates the test of new predictions about how decision complexity affects
discounting; (iii) has potential implications for choice architecture (advice seeking); and
(iv) clarifies the welfare-relevant point that extreme short-run impatience and other non-
standard behaviors partly reflect cognitive limitations rather than stable preferences.

Linking these insights to the literature, we propose that there are two different
classes of anomalies that are related to variation in time delays. A first is the canon-
ical evidence on front-end delay effects and dynamic inconsistency that are thought
to reflect temptation or present bias (e.g., Laibson, 1997; Gul and Pesendorfer, 2001;
Dekel et al., 2009; Toussaert, 2018; Chakraborty, 2021). A second, and larger, class of
anomalies is captured by the stylized fact that intertemporal decisions are insufficiently
sensitive to variation in the delay, which generates extreme impatience both when the
present is involved and when it is not; hyperbolicity both when the present is involved
and when it is not; subadditivity; and cognitive load effects that strongly depend on
the length of the delay. A classic approach in the literature has been to develop models
that capture both classes of phenomena. However, our evidence suggests that the two
sets of regularities are driven by different principles: the second one is largely generated
by noisy cognition, while the first one is not. Yet, noisy cognition better explains many
of the phenomena that are often ascribed to present bias, such as extreme short-run
impatience and hyperbolicity of the discount function.3

3These insights also bear an interesting relationship to Carrera et al. (2022) who identify noise as a
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While ours is the first paper to empirically measure (awareness of) cognitive noise
and show how it predicts discounting behavior, our approach builds on two different
classes ofmodels of cognitive or decision noise. A first class comprises the recent Bayesian
cognitive noise literature (Woodford, 2020; Khaw et al., 2021; Gabaix, 2019; Frydman
and Jin, 2021; Frydman and Nunnari, 2021). Gabaix and Laibson (2022), Gershman
and Bhui (2019) and Vieider (2021) apply these models to intertemporal decisions.
These papers are almost entirely theoretical, while we provide direct empirical evidence,
both by measuring cognitive uncertainty and by experimentally manipulating cognitive
noise. Moreover, in contrast to our focus on how people process time delays, Gabaix and
Laibson (2022) model the noisy cognitive processing of utils. As a result, their model
does not generate some of the key regularities that we are interested in (subadditivity) or
does so only under fairly strong assumptions on prior beliefs (diminishing impatience).⁴

A second related class of models are random response and random preference mod-
els, which have received attention in decision theory and mathematical psychology (e.g.,
Lu and Saito, 2018; He et al., 2019). As we flesh out below, these models sometimes
make predictions that are identical to Bayesian cognitive noise models. Relative to this
literature, our contribution is to measure and exogenously manipulate cognitive noise,
which allows us to provide much sharper and more direct tests than the model-fitting
exercises that pervade the psychology literature on random choice (see Regenwetter et
al., 2018, for a review).

The idea of empirically measuring cognitive noise and related concepts is increas-
ingly gaining traction in the economics literature (e.g., Butler and Loomes, 2007; Agra-
nov and Ortoleva, 2017; Khaw et al., 2021; Enke and Graeber, 2022).⁵ Relative to Enke
and Graeber (2022), where we document a link between cognitive uncertainty and prob-
ability weighting and belief formation, we here study an unrelated class of phenomena
that (i) involve intertemporal decisions and (ii) differ from the S-shaped anomalies com-
monly identified in contexts involving probabilities. Our focus on cognitive uncertainty
also links to the “implicit risk” literature, which highlights the importance of objective un-
certainty about whether or when a delayed reward is received (Sozou, 1998; Dasgupta
and Maskin, 2005; Halevy, 2008; Chakraborty et al., 2020).

The paper proceeds as follows. Section 2 discusses theoretical background and de-

driver of commitment demand. Chakraborty et al. (2017) suggest a role for noise in driving present bias.
⁴ The theoretical difference between time delays and utils also appears relevant because the empirical

intertemporal choice regularities summarized in Cohen et al. (2020) can likewise be partitioned into
those that concern time delays (such as subadditivity and hyperbolicity) and those that concern payouts
or utils (gain-loss asymmetries and magnitude effects). While we focus on the former, the experiments in
Gershman and Bhui (2019) suggest that magnitude effects may also be driven by cognitive noise.

⁵Two psychological and neuroscientific papers that are contemporaneous with ours also elicit people’s
confidence in their intertemporal decisions (Bulley et al., 2021; Soutschek et al., 2021). Probably the
biggest difference to our paper is that they do not focus on our objects of interest: explaining empirical
regularities, studying the effects of complexity, and highlighting implications for advice seeking.
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velops our predictions. Section 3 presents the experimental design and Sections 4–5 the
results. Section 6 presents manipulations of complexity, Section 7 shows model estima-
tions and Section 8 reports on our findings on advice following. Section 9 concludes.

2 Theoretical Considerations and Hypotheses

Consider a choice context in which a decision-maker (DM) is prompted to specify the
units of consumption a in t1 that make him indifferent to consuming ct2

= 1 at t2 >

t1. We define ∆t ≡ t2 − t1. Denote by D(t) = δt the DM’s discount function, and
by u(·) a weakly concave utility function. A helpful theoretical benchmark is that of a
rational DM’s utility-maximizing decision, which equates the discounted utilities of both
options.⁶ Normalizing u(1) = 1, we get:

D(t1)u(a) = D(t2)u(1) ⇒ a∗ = u−1(δ∆t) ∈ [0, 1]. (1)

Our interest will be in how people’s observed decision, denoted ao, systematically de-
viates from a∗ as a result of different types of cognitive noise. We only provide a brief
discussion here because, as reviewed by Regenwetter et al. (2018), models that feature
noise exhibit large diversity in precise modeling approaches and functional form assump-
tions. To begin, we will focus on two classes of models that – under certain assumptions –
predict that the average observed decision can be represented as

E[ao] = λa∗(δ,∆t) + (1−λ)d, λ ∈ [0,1], d ∈ [0,1], (2)

where λ and d are explained below.

Bayesian cognitive noise models. We here outline a particular variant of Bayesian
cognitive noise models that we use to derive our predictions. We then contrast it with
other cognitive noise models in the literature and discuss to what extent they deliver
similar predictions. Details are in Appendix A.

Many Bayesian cognitive noise (also called cognitive imprecision) models presume
that the DM perceives some specific input parameter of the problem with noise (Wood-
ford, 2020; Khaw et al., 2021; Frydman and Jin, 2021; Vieider, 2021). This is often
interpreted as perceptual noise. As in Enke and Graeber (2022), we here take a broader
perspective and formalize the idea that the DM exhibits cognitive noise in determin-
ing his utility-maximizing action, a∗. One interpretation of this is that people only have

⁶When u(c) = cα, eq. (1) also applies in the case ct2
≥ 1, where a∗ is now interpreted as the normalized

indifference point of the rational DM.
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access to a noisy cognitive representation of the relative magnitude of the effective dis-
count factors of the two dates, δ∆t , which determines a∗. According to this broader
perspective of cognitive noise, noisiness could result from any of the following: prefer-
ence uncertainty about the discount factor; imperfect time perception (e.g., Zauberman
et al., 2009; Brocas et al., 2018); and / or the cognitive difficulty of integrating the delay
with the discount factor.

Formally, suppose the DM holds a Beta-distributed prior A over his discounted-utility
maximizing action, where A ∼ Beta(n1d , n1(1 − d)).⁷ The parameter n1 reflects the
DM’s precision of his prior. We refer to the prior mean d as the cognitive default decision,
which is the action that the DM would take before deliberating about the problem. The
cognitive default reflects a relative valuation for a later option in terms of an earlier
option (in percent). Crucially, the default is defined to be independent of the time delay
in a specific choice problem. One way of thinking about this assumption is that the pre-
deliberative default reflects the decision the DM would take before s/he has seen or
parsed the delay in a specific problem.

Through deliberation, the DMgenerates a cognitive signal about what his discounted-
utility maximizing decision a∗ is. This signal S is (scaled) Binomially distributed, S ∼
1
n2

Bin(n2, a∗), and is unbiased, E[S] = a∗. The parameter n2 controls the precision of
the cognitive signal. The subjective likelihood of the utility-maximizing action formed
by a Bayesian DM based on a randomly drawn internal representation {S = s} can then
be represented by a binomial distribution:

L (a∗|S = s) = P(S = s|a∗, n2) =
�

n2

sn2

�

(a∗)sn2(1− a∗)(1−s)n2 . (3)

The posterior mean over the utility-maximizing action writes

ao = λ(n2) · s+ [1−λ(n2)] · d ⇒ E[ao] = λ(n2) · a∗ + [1−λ(n2)] · d. (4)

This formulation intuitively captures an anchoring-and-adjustment heuristic (Tversky
and Kahneman, 1974), according to which people anchor on some initial reaction and
then adjust based upon the outcome of their deliberation process. The weight λ partly
captures the precision of the cognitive signal. The main implication of eq. (2) is that
decisions are insufficiently sensitive to the time delay because they partly reflect the
delay-invariant cognitive default.

In the formulation above, the signal precision is exogenous and constant. In our
experimental data, we will see that cognitive noise is an increasing, strongly concave

⁷Our exposition is an adaptation of atemporal applications (Fennell and Baddeley, 2012; Heng et al.,
2020; Enke and Graeber, 2022).
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function of the length of the delay. Thus, in Appendix A we show that the predictions
below also hold when λ exponentially decreases in ∆t.

Pre-registered predictions. Relative to a DM without cognitive noise (λ= 1), a DM with
cognitive noise (λ < 1) exhibits:

1. More pronounced short-run impatience, both when the time delay starts in the present
and when it starts in the future.

2. More pronounced decreasing impatience, both when the time delay starts in the
present and when it starts in the future.

3. More pronounced subadditivity.

4. The same degree of front-end delay effects: the pattern that people appear more pa-
tient when a constant is added to both the early and the later date.

To see the logic behind these predictions, it is useful to imagine that the cognitive
default action d in eq. (2) is “intermediate” in nature.⁸ Then, Predictions 1 and 2 imply
a distinctive “flipping” property: while cognitively noisy agents appear more impatient
over short delays, the inelasticity with respect to the delay can make them less impatient
over very long delays.

In our experiments, a central tendency for the mean prior belief is plausible because
people have little experience with the context, akin to documentations of central ten-
dency or compromise effects in psychology.⁹ In our model estimations reported below,
estimated defaults are indeed consistently intermediate.

The stylized model presented above differs in two respects from other prominent dis-
counting applications of Bayesian noisy cognition in the literature, Gabaix and Laibson
(2022) and Gershman and Bhui (2019).1⁰ First, both assume that all decision-relevant
cognitive noise stems from the mental simulation of future monetary amounts or utils,
while we posit noisy cognition at least partly with respect to effective discount factors.
The main motivation is our objective to explain intertemporal choice patterns associated
with variation in time delays (rather than, e.g., magnitude effects and gain-loss asym-
metries). Second, our approach effectively assumes that DMs encode with noise the

⁸Specifically, suppose that a∗(∆t → 0)> d > a∗(∆t →∞), which says that the default action is less
(more) patient than the utility-maximizing action for very short (long) time delays.

⁹We experimentally distinguish this tendency towards an intermediate relative valuation from the
potential heuristic of “clicking in the middle” of a multiple price list, see Section 5.4.

1⁰In work that is contemporaneous to ours, Vieider (2021) models a DMwho exhibits cognitive noise in
the perception of time, combined with the assumption that time is encoded in log space. This model differs
from ours in that it predicts that cognitive noise generates present bias, which we don’t find empirically.
Moreover, unlike us, Vieider neither directly measures nor experimentally manipulates cognitive noise
or cognitive uncertainty. Rather, he fits his model to experimental data, as is typical in the psychology
literature on random choice.
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relative effective discount factors that are associated with the two delays, δ∆t . This is in
contrast to Gabaix and Laibson, who assume that each option is represented indepen-
dently before noisy representations are compared to one another. The assumption that
discounting is relative (set-dependent) builds both on a theoretical literature (e.g., Ok
and Masatlioglu, 2007; Read, 2001) and on studies that show that across different do-
mains people make decisions by comparing dimension-by-dimension (Rubinstein, 2003;
Arieli et al., 2011).

The distinctions between the framework above and Gabaix and Laibson (2022) mat-
ter. First, because Gabaix and Laibson (2022)’s model maintains transitivity, it does not
predict subadditivity.11 Second, their model only predicts diminishing impatience under
fairly special assumptions on the signal structure and the location of the prior. Third, un-
like ours, their model predicts that cognitive noise produces front-end delay effects and
related preference reversals, see Section 2.7 of Gabaix and Laibson (2022).12

Random response models. This class of models is broad. One incarnation that re-
lates to the preceding discussion is that the DM probabilistically either plays his utility-
maximizing action or chooses at random, ε∼ F(·) ∈ [0,1], with E[ε] = d. Formally, we
say that a trembling action at r is given by

at r =







a∗(δ,∆t) with prob. λ

ε otherwise
⇒ E[at r] = λa∗(δ,∆t) + (1−λ)d. (5)

This expression for the average action is identical to the one in (2). Thus, the two models
make identical predictions about average behavior. Moreover, the models are also diffi-
cult to tease apart looking at individual decisions because they both predict that actions
will be random (even conditional on potential anchoring on a cognitive default). Thus,
depending on the precise assumptions about the distribution of the random response,
various different individual-level response patterns can be rationalized.

Another type of random response model is that the DM’s action is given by at r,2 =
a∗(δ,∆t)+η, with E[η] = 0. Then, because the DM’s intertemporal decision is bounded
by zero and one, random decision errors or measurement error (Gillen et al., 2019) may
lead to boundary effects that push decisions to be more intermediate than they really are.
We do not highlight this type of model because, in our data, decisions that are associated
with strictly positive cognitive uncertainty are rarely located at the boundaries (less than
5% of all decisions), and we have verified that identical results hold when these decisions

11Note that because our model predicts non-transitive behavior, the characterization of time consis-
tency through stationarity and time invariance suggested by Halevy (2015) does not apply here.

12Front-end delay effects refer to the regularity that people generally behave less patiently in a tradeoff
between consumption dates t0 and t1 than in a tradeoff between t0 + z and t1 + z, for z > 0.
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are excluded from the analysis.

Random preference models. This class of models assumes that the DM’s discount func-
tion is stochastic and fluctuates over time (e.g., Regenwetter et al., 2018; Lu and Saito,
2018; He et al., 2019). In its most widespread incarnation, random intertemporal pref-
erences models assume that “true” discounting is exponential, yet the decision-relevant
discount factor δ̃ varies randomly across trials, such that δ̃ = δ+µ, with E[µ] = 0. Thus,
in the setup sketched above, the DM’s random preference action ar would be given by

ar = a∗(δ̃,∆t). (6)

It is widely understood that variation in δ can produce behavior that implies “decreasing
impatience” because the average of multiple exponential functions is not necessarily
exponential and can be hyperbolic (Weitzman, 2001; Jackson and Yariv, 2014; Lu and
Saito, 2018; He et al., 2019). Thus, as in the models described above, higher noisiness
(variance of µ) should be correlated with stronger decreasing impatience. At the same
time, in contrast to the cognitive noise model sketched above, models that only feature
random variation in preferences do predict front-end delay effects (see Proposition 1 in
Jackson and Yariv (2014)) and don’t predict subadditivity.

Summary and empirical implementation. The different classes of random choice
models can make similar predictions. Moreover, the models afford varying degrees of
flexibility (see Regenwetter et al., 2018). Hence, our objective is not to definitely tease
these models apart, but to generically show that cognitive noise is instrumental for un-
derstanding intertemporal choice. At the same time, to the degree that the different
classes of models do make different predictions, our empirical results will allow us to
draw conclusions about the relative explanatory power of the different approaches.

Because the actual form and realizations of cognitive noise are unobservable, we
empirically measure a signature of cognitive noise. Following Enke and Graeber (2022),
we use the language of cognitive noise models to define cognitive uncertainty as people’s
lack of certainty that their action equals their true utility-maximizing action:

pCU ≡ P(
�

�A|{S = s} − ao
�

�> c), (7)

where A
�

�{S = s} is the perceived posterior distribution about the utility-maximizing
action, conditional on the cognitive signal s. Intuitively, cognitive uncertainty captures
the likelihood with which the DM thinks his optimal action might fall outside a window
of length 2c around the action that he actually chose.
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3 Experimental Design

3.1 Choice Tasks

Incentivized UberEats Voucher Experiments. In treatment Voucher Main, rewards are
given by UberEats food delivery vouchers.13 Participants complete multiple price lists
(MPLs) that elicit interval information about indifference points. In each list, the left-
hand side Option A is a fixed delayed UberEats voucher with value y2 ∈ {40, 42, . . . , 50}.
The later payout date t = t2 varies between one week and one year. The right-hand side
Option B is an UberEats voucher the value of which increases as one goes down the list,
from $2 to $y2, in steps of $2 each. The payment date for Option B, t1, is always strictly
earlier than the one for Option A, though not necessarily today.

Participants had to indicate a choice between Options A and B in each row of the
MPL. We implemented a computerized auto-completion mode that enforces a single
switching row: whenever a subject chose Option A in a given row, Option A automatically
got selected in all rows above. Likewise, whenever a subject chose Option B in a given
row, Option B automatically got selected in all rows below. Participants could revisit and
change their choices at any time, and choices only became locked in when a participant
decided to proceed to the next screen. Appendix Figure 7 shows a screenshot.

UberEats is the largest online food ordering and delivery service in the world. The
service can be used to order food for takeout or delivery from a wide array of restaurants
and is widely available throughout the United States, with an estimated market share
of between one fifth to one third (Curry, 2021). Through a special collaboration with
Uber, we designed our UberEats vouchers to be valid for a period of only seven days. For
example, when a choice option is given by “$40 voucher that is valid in 6 months,” then
this means that the voucher will become valid six months after the participant’s study
date, and will remain valid for a period of seven days. We implemented a comprehension
check to verify that participants understood that the voucher would expire after seven
days, rather than be valid indefinitely. Participants’ vouchers were directly credited to
their personal UberEats accounts within 10 hours of completion of the study, such that
subjects did not have to actively claim the voucher. The vouchers were always visible
in their accounts, they could just not be used before the validity period. Participants
received automatic reminders 24 hours before a voucher became valid and 24 hours
before it expired.

13The currently most widely used experimental economics paradigm to implement primary rewards in
an intertemporal choice context consists of real effort tasks. These are infeasible in our context, however,
because our research hypothesis requires a consumption good that can plausibly be implemented with
long time delays, while real effort studies focus on horizons of a few weeks at most. Thus, in these setups,
we would be able to identify a potential link of cognitive uncertainty with short-run impatience but not
with diminishing impatience.
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Hypothetical Money-Early-versus-Later Experiments. TreatmentMoneyMain has the
same structure as the UberEats voucher experiments, except that the rewards are given
by hypothetical dollar amounts.While the hypothetical nature of the payouts has obvious
disadvantages, it also confers various advantages, in particular in conjunction with our
financially incentivized UberEats experiments. First, we could explicitly instruct partici-
pants to make their choices assuming that there is no payment risk. Second, hypothetical
payments allow us to use some very long time delays (up to “in 7 years”) that would
not be feasible with real payments or food vouchers. This is an important advantage
because, as discussed above, the inelasticity of discounting to the time delay leads us to
expect that the relationship between cognitive uncertainty and impatience will flip as a
function of the time delay. Finally, money experiments allow us to replicate the setup in
which regularities such as diminishing impatience or subadditivity have predominantly
been documented in the literature (Cohen et al., 2020).

Choice configurations. First, for choice lists with an early date of today, we implement
delayed dates that range from one week to seven years in the hypothetical money ex-
periments, and from one week to one year in the incentivized UberEats study. Second,
in both experiments, we implement a broad set of lists that have an early payment date
of “in one month,” again with large variation in the corresponding later payment dates.
These choice lists allow us to study short-run impatience and decreasing impatience,
starting from both the present and the future.

Third, we implement sets of three choices each that serve to test for subadditivity
effects, such as: (t1 = 0, t2 = 12m), (t1 = 0, t2 = 6m), (t1 = 6m, t2 = 12m). Fourth,
these subadditivity sets also allow for an analysis of front-end delay effects: the extent
to which people are more patient in, e.g., (t1 = 6, t2 = 12) than in (t1 = 0, t2 = 6). Fifth,
for each participant, two randomly selected choice configurations were presented twice
in random locations in the sequence of twelve price lists. These are exact repetitions of
the same choice problems and facilitate an analysis of across-trial choice variability. The
order of all choice lists was randomized at the participant level.

Study components. The hypothetical money study consisted of four parts. In the first,
each participant completed a total of twelve MPLs. In the second part, each subject com-
pleted six additional intertemporal choice problems that were administered in a direct
elicitation format rather than using MPLs. We discuss these data in greater detail in Sec-
tion 5.4. In the third part of the study, participants completed three choice under risk
MPLs that (i) facilitate an analysis of the cross-domain stability of cognitive uncertainty
and (ii) allow to disentangle time discounting from the role of utility curvature in our
model estimations (Section 7). In the fourth part, participants completed a Raven ma-
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trices test of cognitive skills. The structure of the UberEats study was identical, except
that we did not implement the direct elicitation choice problems.

3.2 Measuring Cognitive Uncertainty

Elicitation. In both paradigms described above, participants make choices in MPLs
that carry interval information about indifference points. In our experiments, the switch-
ing intervals have a width of $2. Our experimental instructions explain that we use this
switching interval to determine how much the participant values the larger-later pay-
ment at the earlier date. Immediately after each choice list, we measure cognitive un-
certainty (CU) as the participant’s subjective probability that their true valuation of the
later payment / voucher is actually contained in their stated switching interval. Specifi-
cally, after a participant completes a choice list with switching interval given by [$a, $b],
the subsequent screen reminds them of their previous decision and elicits cognitive un-
certainty:

Your choices on the previous screen indicate that you value $y2 in t2 some-
where between $a and $b in t1. How certain are you that you actually value
$y2 in t2 somewhere between $a and $b in t1?

Participants answer this question by selecting a radio button between 0% and 100%, in
steps of 5%. Appendix Figure 8 provides a screenshot. This cognitive uncertainty mea-
surement follows the same protocol as proposed in a revised version of Enke and Graeber
(2022) for choice under risk, here adapted to an intertemporal choice context. In line
with the discussion in Section 2, we interpret this question as capturing the participant’s
posterior uncertainty about their utility-maximizing decision, after some sampling of
cognitive signals has taken place. We refer to (inverted) responses to this question as
cognitive uncertainty rather than confidence because in economics the latter is used for
problems that have an objectively correct solution.

Potential origins of cognitive uncertainty. Our measure is deliberately designed to
capture participants’ overall subjective uncertainty about what their preferred action is.
This uncertainty could have various potential origins. First, people may not know their
true preferences, in particular their discount factor. Second, even conditional on know-
ing their preferences, people may cognitively struggle with choosing an action that max-
imizes discounted utility. For example, people may find it hard to cognitively integrate
their discount factor with the time delay that is implied by different choice options, or
they may suffer from imperfect time perception. A hypothetical special case of this class
of non-preference-uncertainty mechanisms is that there is no true discounting at all, but
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that experimental subjects find it cognitively difficult to maximize the net present value
of payments.

Comparisonwith alternativemeasures. Broadly speaking, the literature has proposed
two different types of measures for eliciting people’s uncertainty about their own deci-
sions. At one extreme, psychologists, neuroscientists and some economists elicit mea-
sures of “decision confidence,” in which subjects indicate on Likert scales how confident
or certain they are in their decision (e.g., Yeung and Summerfield, 2012; De Martino
et al., 2013, 2017; Polania et al., 2019; Bulley et al., 2021; Xiang et al., 2021; Butler
and Loomes, 2007). At the other extreme, economists have proposed to use measures
of across-trial variability (Khaw et al., 2021) or deliberate randomization (Agranov and
Ortoleva, 2017). Our preferred measure strikes a middle ground between these two ap-
proaches. While our approach retains the attractive simplicity of implementing a single
question (as in the psychology literature), it is also quantitative in nature. The simplicity
of asking one question per decision screen should be contrasted with the approach of
gauging cognitive noise through across-task variability in choices, which requires many
trials and is usually defined at the level of a study rather than of a single choice problem.

Incentives. We deliberately do not incentivize the CU elicitation to maintain the sim-
ple – and for subjects intuitive – nature of the protocol. Recent research highlights that
adding complex and potentially confusing scoring rules to elicitation tasks may actually
decrease the quality of responses (Danz et al., 2022). To the degree that a lack of incen-
tives may induce noisier CU data, our results on the link between CU and intertemporal
decisions will be biased downward.

Link with choice data. Some researchers have used choice variability as empirical
measure of cognitive noise. We deem it useful to establish an empirical correspondence
between our CU question and variability for two reasons. First, data on choice variabil-
ity is useful to understand whether people’s subjective perception of their own cognitive
noise is roughly accurate. Second, a correlation between CU and choice variability may
be seen as validation of our unincentivized question, in the spirit of recent experimen-
tal validation studies in the literature (e.g. Falk et al., 2015; Enke et al., forthcoming).
In both of our datasets (money and vouchers), across-trial variability and cognitive un-
certainty exhibit a correlation of r ≈ 0.17, p < 0.01 (Appendix Figure 10). This is in
line with the correlations between cognitive uncertainty and choice variability in lottery
choice and belief updating documented in Enke and Graeber (2022). Arts et al. (2020)
also show correlations between randomization and an unincentivized confidence ques-
tion. In combination, we interpret these results as strongly suggesting that incentivized
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choice data are consistent with the idea that our unincentivized cognitive uncertainty
measurement captures the noisiness of people’s cognitive processes.

3.3 Design Considerations

Time discounting studies are complicated by a range of methodological considerations.
We discuss prominent concerns and implications for interpretation below.

External uncertainty / payment credibility. According to the so-called “implicit risk”
hypothesis, intertemporal decisions could reflect not only genuine discounting but also
external uncertainty (e.g. Benzion et al., 1989; Sozou, 1998; Halevy, 2008; Chakraborty
et al., 2020). This could be due to a lack of trust in the experimenter, uncertainty about
the future purchasing power of money or vouchers, or the subjective probability of forget-
ting about the existence of the later reward. To address this, we put various measures in
place. First, we deliberately implemented the money experiments in hypothetical terms.
This allows us to emphasize that subjects should make their decisions assuming that
they know with certainty that they will receive all payments as indicated.

Second, in the UberEats experiments, because vouchers appear in the participant’s
UberEats account within a few hours of the study regardless of the precise validity period,
there is no differential payment risk across vouchers with different time delays. Partici-
pants could always view vouchers in their account, they could just not be used. We view
this as a main advantage of our method relative to traditional monetary payments.

Third, those participants that actually won a voucher were asked to state their sub-
jective probability that they will actually receive and use their voucher. The median
(average) response is 95% (84%). Most importantly, we find that subjects’ beliefs are
uncorrelated with the delay of the voucher’s validity period. This suggests that future
vouchers were not perceived as more uncertain. All of our results are robust to only
including participants in the analysis who indicate 100% certainty.1⁴

Cognitive vs. external uncertainty. A related concern is that participants misinterpret
the CU question as asking about their subjective probability of actually receiving the later
reward. To address this, our money experiments include a comprehension check ques-
tion that directly asks participants to indicate whether the CU elicitation question asks
about (i) the subject’s subjective probability of actually receiving the money or (ii) their
certainty about their own valuation, given that they know they will receive the money

1⁴Regarding actual consumption of our vouchers, at the time of the writing of this paper, 77% of
subjects had used their UberEats credit, which is arguably a high usage rate for a voucher. This percentage
fluctuates across delays but does not systematically decrease in the length of the delay.
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with certainty. In addition, notice that an account of CU capturing perceived payment un-
certainty would predict that CU is always negatively correlated with observed patience.
However, we will see that, over sufficently long time horizons, CU is actually positively
correlated with patience.

Fungibility. A common argument is that intertemporal choice experiments over money
do not capture preferences-based discounting because money is fungible. From such a
perspective, behavior in experiments reveals participants’ attempt to maximize the net
present value of payments, given perceived real interest rates. An alternative view is that
experimental participants narrowly bracket their choices and treat monetary amounts
in experiments as proxy for utils (Halevy, 2014; Sprenger, 2015; Andreoni et al., 2018;
Epper et al., 2020). We acknowledge this discussion, but note that it only affects the pre-
cise interpretation of our cognitive uncertainty question. Under the interpretation that
our experimental paradigms do not capture true discounting, our CU measure picks up
participants’ cognitive limitations in computing discounted utility (here: NPVs), condi-
tional on knowing their preferences (δ = 1). On the other hand, if experiments over
money also capture real discounting, the CU question potentially captures all of the
various psychological mechanisms discussed in the previous subsection. Regardless of
whether the participant’s objective is to maximize NPV or discounted utility more gen-
erally, our hypothesis is that subjective uncertainty about the utility-maximizing action
is associated with a compression effect.

Utility curvature. Estimates of discount rates from price list choicesmay be confounded
by utility curvature. To address this, we use the “double price list method” that estimates
utility curvature from a separate set of risky choices.

Transaction costs. A main concern with traditional time discounting experiments is
that they capture differential transaction costs between present and future. In our hypo-
thetical money experiments, transaction costs are implausible. In the UberEats experi-
ments, there are likewise no transaction costs because participants automatically receive
their vouchers credited to their UberEats app, together with automated reminders about
the validity dates.

3.4 Logistics and Participant Pool

The study was conducted on Prolific, an online worker platform. Recent experimental
economics work suggests that data quality on Prolific is higher than on Amazon Mechan-
ical Turk, and comparable to that in a canonical lab subject pool (Gupta et al., 2021). For
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the hypothetical money experiments, we made use of Prolific’s “representative sample”
option to collect data from a broad and diverse (though not actually nationally repre-
sentative) set of participants.1⁵ We pre-registered a sample size of N = 600 participants.
However, because of the discreteness of Prolific’s representative sample procedure, we
eventually ended up sampling N = 645 people. Since we view throwing away data as
questionable, we keep the full sample, but we have verified that all results hold if we
restrict the sample to the first 600 completes.

In the UberEats experiments, the study description that was visible to prospective par-
ticipants announced that study bonuses would be paid in the form of UberEats vouch-
ers. In addition, we implemented a screening in which participants were again asked
whether they possess an UberEats account, and we immediately routed all people out
of the experiment who did not.1⁶ As we pre-registered, N = 500 workers participated
in the UberEats study.

Participants in both studies completed a comprehension check quiz of three questions
each. Any participant who failed one or more of these questions was immediately routed
out of the experiment (16% in the money and 37% in the UberEats experiments). We
additionally implemented an attention check at the end of the study, and exclude all
participants who failed it (2% in the money and 1% in the UberEats experiments).

In the hypothetical money experiments, participants received $4.50 as a flat payment
for completion of the study. In the UberEats study, participants received a completion
fee of $4.00. In addition, one of the three parts of the experiment (intertemporal choice,
risky choice, Raven IQ test) was randomly selected for payout, with associated probabil-
ities of 25:5:70. Appendix E contains screenshots of all experimental instructions and
comprehension checks.

3.5 Pre-Registration

Appendix Table 6 provides an overview of all treatments conducted for this paper, in-
cluding pre-registration details. Our pre-registration includes (i) predictions 1–4 in Sec-
tion 2, (ii) the prediction that cognitive uncertainty is correlated with across-trial choice
variability, and (iii) descriptive analyses of the correlates of cognitive uncertainty to be

1⁵In our money experiments, average age is 42 years, 54% are female, and 45% have a college degree.
In our UberEats experiments, average age is 28 years, 58% are female and 59% have a college degree.

1⁶Because our experiments were conducted from late March through May 2021, we took various mea-
sures to ensure that only those prospective participants signed up for the study who were not concerned
about ordering food for delivery due to COVID-19. First, the study description clarifies that people should
not participate if they are concerned about ordering food for delivery due to COVID-19. Second, we re-
stricted the sample to participants of age 45 and under. Third, we ask prospective participants whether
they are worried about ordering delivery food due to COVID-19, and we immediately exclude anyone
from the study whose response is affirmative. Finally, by late March 2021 it had become increasingly
evident that delivery food is not a main source of COVID-19 transmission.
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discussed in Section 4.

4 Descriptives

Appendix Figure 9 shows histograms of task-level CU in the MPL decisions in treatments
Money Main (left panel) and Voucher Main (right panel), such that each participant con-
tributes twelve observations. 75% of all decisions inMoney Main and 81% of decisions in
Voucher Main are associated with strictly positive CU. This heterogeneity reflects both
across-participant heterogeneity and systematic variation across choice problems. Fig-
ure 2 illustrates correlates of CU in treatment Money Main using binned scatter plots;
the analogous figures for treatment Voucher Main look almost identical. The left panel
shows that CU increases in the length of the absolute time delay up to a delay of about
one year (r = 0.07, p < 0.01, for delays smaller than 24 months). This suggest that
payouts or consumption in two temporally distant periods are generally more difficult
to evaluate against each other. Strikingly, the observed pattern is strongly concave, and
the relationship is essentially flat for delays longer than a year (r = −0.05, p = 0.35,
for delays of 24 months or longer). In Appendix A, we show that our theoretical predic-
tions apply when the magnitude of cognitive noise is a concave increasing function of
the delay rather than a constant.

A relevant question is how consistently people exhibit high or low CU. In our data,
participant-fixed effects explain 45-54% of the variation in CU. Thus, CU appears to have
reasonably high within-domain stability. Looking at across-domain stability, the right
panel of Figure 2 documents that a participant’s average CU in intertemporal decisions
is strongly correlated with the participant’s average CU in separate risky choice (lottery)
experiments that we implemented in the final part of our study. The raw correlation is
r = 0.62 in Money Main and r = 0.50 in Voucher Main.1⁷

5 Cognitive Uncertainty and Intertemporal Choice

5.1 Inelasticity of Decisions to the Time Delay

We begin by displaying the raw data: how intertemporal decisions vary as a function of
the delay. For each choice list, a useful summary statistic is a participant’s normalized
indifference point, which is given by the midpoint of the switching interval, divided by the

1⁷Other correlations between average subject-level CU and demographics are mostly small. The first
value refers to the money study and the second one to the voucher study: r = −0.08 (0.01) with the
score on Raven matrices IQ test, r = −0.10 (0.08) with age, r = 0.06 (0.06) with a female indicator,
r = −0.03 (−0.05) with a college degree indicator, and r = 0.07 (−0.07) with log study completion time.

19



10
15

20
25

30
C

og
ni

tiv
e 

un
ce

rt
ai

nt
y

0 20 40 60 80
Time delay in months

Money Main: CU as function of time delay

10
20

30
40

A
ve

ra
ge

 C
U

 in
 in

te
rt

em
po

ra
l c

ho
ic

e

0 20 40 60 80
Average CU in choice under risk

Money Main: CU across choice domains

Figure 2: Binscatter plots. The left panel shows the relationship between task-level CU and the log time de-
lay in a decision problem (N=7,740 decisions). The right panel shows the correlation between participant-
level average CU in intertemporal choice and average CU in choice under risk (N=645 participants).

later payment amount. This measure represents which payment at the earlier payment
date makes the participant indifferent to receiving $1 at the later date.

Figure 3 illustrates the relationship between normalized indifference points (in per-
cent), cognitive uncertainty and time delays. The left-hand panels show results for treat-
ment Money Main and the right-hand panels those for Voucher Main. In the top panels,
we plot normalized indifferent points separately for participants with CU of zero and
strictly positive CU. To make the results comparable between the voucher and money
experiments, the x-axes are kept identical even though the maximal time delay in the
vouchers study is only twelve months. For ease of illustration, we restrict attention to
decision problems in which the early payment date is today, t1 = 0. The analogous fig-
ure for t1 > 0 looks very similar (Figure 11 in Appendix B). The main takeaway of the
top panels is that CU is strongly associated with compression of indifference points to-
wards the center (roughly 50%). Notably, in treatment Money Main, this CU-associated
inelasticity is sufficiently strong that cognitively uncertain participants act as if they are
less patient over relatively short horizons, yet more patient over relatively long horizons,
with a crossover point at around one year. This indicates that the main behavioral impli-
cation of cognitive noise in intertemporal choice is indeed insensitivity to time delays,
rather than universally higher impatience. A second takeaway is that behavior is very
similar in Money Main and Voucher Main, including in its link to CU. Finally, notice that
observed normalized switching points tend to values below 50% for long delays. This is
in line with our modeling framework sketched in Section 2 even under a default decision
of 50%, see Section 7 for a discussion of this issue.

The bottom panels of Figure 3 provide a more complete picture of the relationship
between cognitive uncertainty and sensitivity to time delays that does not rely on the
arbitrary sample split into CU = 0 and CU > 0. We now split the sample into cognitive

20



0

20

40

60

80

100
N

or
m

al
iz

ed
 in

di
ff

er
en

ce
 p

oi
nt

0 12 24 36 48 60 72 84
Time delay (months)

Cognitive uncertainty = 0 Cognitive uncertainty > 0
±1 std. error of mean

Money Main

0

20

40

60

80

100

N
or

m
al

iz
ed

 in
di

ff
er

en
ce

 p
oi

nt

0 12 24 36 48 60 72 84
Time delay (months)

Cognitive uncertainty = 0 Cognitive uncertainty > 0
±1 std. error of mean

Voucher Main

-.8

-.6

-.4

-.2

0

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
 a

nd
 9

5%
 C

I

CU Q1
(ave. = 1.3)

CU Q2
(ave. = 12.0)

CU Q3
(ave. = 24.1)

CU Q4
(ave. = 55.9)

Money Main: Effect of time delay by CU

-4

-3

-2

-1

0

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
 a

nd
 9

5%
 C

I

CU Q1
(ave. = 1.5)

CU Q2
(ave. = 15.0)

CU Q3
(ave. = 27.5)

CU Q4
(ave. = 48.6)

Voucher Main: Effect of time delay by CU

Figure 3: Top panels: Normalized switch points as a function of time delay with t1 = 0 in Money Main
(left, N = 4,948) and Voucher Main (right, N = 3,846). Normalized indifference points are given by the
midpoint of the switching interval in a choice list, divided by the larger-later payout amount (in %). The
figure shows averages across decisions. Whiskers show standard error bars, computed based on clustering
at the subject level. Bottom panels: Coefficients from regressions of normalized indifference points on time
delay, split by CU quartiles (for comparability again t1 = 0 only; left: Money Main; right: Voucher Main).

uncertainty quartiles. Because in our experiments between 20% and 25% of all CU
statements are equal to zero, the first quartile almost corresponds to CU = 0, while
the other quartiles leverage variation in the intensive margin of CU. For each of the
four CU buckets, we regress observed indifference points on the time delay and report
the coefficient. If discounting did not depend on cognitive noise, the four regression
coefficients would be equally large. Instead, we see that the effect of the time delay on
behavior continuously decreases (in absolute terms) as CU increases. This shows that the
results are not just driven by the extensive margin of CU, but that higher CU is strongly
associated with more compression also within the sample of strictly positive CU.

Table 1 presents further supporting OLS regression estimates. Here, we relate partic-
ipant’s normalized indifference point to the length of the time delay, interacted with CU.
Columns (1)–(4) show the results forMoney Main, separately for whether the early pay-
ment date is today or in the future. Columns (5)–(8) show analogous results for Voucher
Main. The results confirm the visual impression from Figure 3. First, CU is associated
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Table 1: Cognitive uncertainty and inelasticity with respect to time delays

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Time delay (years) -8.08∗∗∗ -8.08∗∗∗ -7.76∗∗∗ -7.72∗∗∗ -39.2∗∗∗ -38.9∗∗∗ -39.1∗∗∗ -39.1∗∗∗
(0.39) (0.39) (0.39) (0.39) (2.16) (2.14) (3.88) (3.86)

Time delay × Cognitive uncertainty 0.11∗∗∗ 0.11∗∗∗ 0.073∗∗∗ 0.071∗∗∗ 0.61∗∗∗ 0.59∗∗∗ 0.58∗∗∗ 0.59∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.08) (0.08) (0.14) (0.14)

Cognitive uncertainty -0.38∗∗∗ -0.37∗∗∗ -0.32∗∗∗ -0.31∗∗∗ -0.59∗∗∗ -0.58∗∗∗ -0.57∗∗∗ -0.57∗∗∗
(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.07) (0.07)

Payment amount FE No Yes No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes No Yes

Observations 4948 4948 2792 2792 3846 3846 2154 2154
R2 0.17 0.19 0.19 0.21 0.20 0.21 0.13 0.14

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Columns (1)–(4) include
data from Money Main, where columns (1)–(2) restrict attention to decision problems with t1 = 0 and columns (3)–(4)
to problems with t1 > 0. An analogous logic applies to columns (5)–(8) for Voucher Main. Demographic controls include
age, gender and income bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

with a lower sensitivity of indifference values with respect to time delays, as can be in-
ferred from the positive interaction coefficient. Second, the regression intercept (which
captures patience over very short horizons) is negatively correlated with CU, as we can
infer from the significant raw CU term. These results are very similar for t1 = 0 and
t1 > 0. To illustrate magnitudes, for example, in column (1), the coefficients suggest
that increasing CU from zero to fifty (the 90th percentile) is associated with a decrease
in sensitivity from 8.1 to 2.6 (or 68%), a large magnitude.1⁸

5.2 Linking Cognitive Uncertainty to Empirical Regularities

5.2.1 Short-Run Impatience

Figure 3 provided strong visual evidence for the hypothesis that, over very short hori-
zons, cognitively uncertain subjects are more impatient than cognitively certain ones, in
both Money Main and Voucher Main. More formally, in Money Main, the raw correlation
between normalized indifference points for one-week delays and cognitive uncertainty
is ρ = −0.45 both when t1 = 0 and when t1 > 0. In Voucher Main, the same correla-
tions are given by ρ = −0.39 and ρ = −0.45. All of these correlations are statistically
significant at the 1% level. Appendix Table 7 reports regressions.

1⁸The reason why the coefficient magnitudes are so different between Money Main and Voucher Main
is the large difference in the average time delay between these two experiments. Once the data in Money
Main are restricted to delays of at most one year, the coefficients are similar across the two experiments.
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5.2.2 Decreasing Impatience

To study decreasing impatience,1⁹ we follow the literature and define a required rate of
return for a given normalized indifference point ao as RRRt1,t2

(ao) ≡ ln
� ct2

ct1

�

= ln
�

1
ao

�

.
The RRR is a metric of impatience that depends on the delay. The literature frequently
works with a per-period measure of patience as RRR/∆t. A transformation of this mea-
sure that captures per-period patience in an intuitive way is

δH(a
o)≡ e−RRR/∆t = (ao)1/∆t . (8)

This monotone transformation is attractive because – in a standard exponential discount-
ing model without utility curvature and present bias – it directly corresponds to the
exponential annual discount factor that is implied by the indifference point ao. Thus,
decreasing impatience says that δH(ao) increases in the time delay, while under expo-
nential discounting δH(ao) is constant in the time delay.

Figure 4 shows the link between CU and decreasing impatience in four different
panels: treatments Money Main and Voucher Main, separately for t1 = 0 and t1 > 0. For
each sample, we compute the average implied δH(ao) across subjects for a given delay.2⁰

The figures show that average per-period patience strongly increases in the time de-
lay for cognitively uncertain participants. This is true in all four panels. For participants
with CU of zero, however, per-period patience increases much more weakly. For exam-
ple, for decisions in Money Main, implied per-period patience increases by a factor of
9.4 for choices associated with positive cognitive uncertainty (going from a time delay
of one week to seven years), but by a factor of only 1.8 for decisions with zero cognitive
uncertainty. Table 8 in Appendix C confirms these visual impressions through regres-
sions. Furthermore, we have again verified that the results are very similar if we exclude
decisions that are associated with CU = 0.

The strong increase in per-period patience for high-CU decisions cannot be explained
by present bias alone even if one asserted that CU and a desire for immediate gratifica-
tion are correlated. This is because we find very similar patterns for t1 = 0 and t1 > 0,
while present bias only predicts diminishing impatience for t1 = 0. Section 7 calibrates
the relative importance of CU and present bias in generating observed behavior.

1⁹Decreasing impatience is by far the dominant finding in the literature. However, it is not universal,
neither when the early date is today nor when it is in the future (see, e.g., Harrison et al., 2005).

2⁰This figure is not subject to the aggregation insight of Weitzman (2001) and Jackson and Yariv
(2014), which is that if the true data-generating process consists of subjects having different exponential
discount functions, the average choice cannot necessarily be represented by an exponential function. This
is not a problem here because we do not compute an implied δH for the average choice, but instead average
the implied δH . Therefore, if the true process was exponential and participants had heterogeneous but
constant discount factors, the average implied δH in Figure 4 should be constant in the delay.
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Figure 4: Implied per-period patience in Money Main (top panels) and Voucher Main (bottom panels),
partitioned by whether the early payment date is today or in the future. Per-period patience is computed
as δH(ao) ≡ e−RRR/∆t = (ao)1/∆t , where ao is the observed normalized indifference point. The figure
shows average δH across decisions. Whiskers show standard error bars, computed based on clustering at
the subject level.

5.2.3 Subadditivity

We now turn to the two “subadditivity sets” in our data, each of which consists of three
dates: set 1: {0, 6m, 12m}; set 2: {0, 4m, 8m}. Following standard procedures in the
literature, we compare the normalized indifference point obtained from the problem
involving one long interval with the product of the two normalized indifference points
obtained from the respective two short intervals (the implied normalized indifference
point of a long “composite interval”). Thus, although each subject makes three decisions
for a given set, these give rise to two observations. Subadditivity occurs if the former
quantity is larger than the latter (Read, 2001; Dohmen et al., 2017). Table 2 summarizes
the results for both Money Main and Voucher Main. In both sets of experiments, we see
strong evidence for the existence of subadditivity, see columns (1) and (4). In line with
our hypothesis, the difference in observed patience between long and short intervals
increases significantly in CU, see the interaction term in columns (2)–(3) and (5)–(6).

24



Table 2: Cognitive uncertainty and subadditivity

Dependent variable:
Normalized indifference point over long interval

Treatment: Money Main Voucher Main

(1) (2) (3) (4) (5) (6)

1 if long interval, 0 if composite interval 8.53∗∗∗ 3.35∗∗ 3.63∗∗∗ 9.50∗∗∗ 1.51 1.56
(0.62) (1.32) (1.32) (0.60) (1.61) (1.60)

1 if one long interval × Cognitive uncertainty 0.25∗∗∗ 0.23∗∗∗ 0.32∗∗∗ 0.32∗∗∗
(0.06) (0.06) (0.06) (0.06)

Cognitive uncertainty -0.44∗∗∗ -0.42∗∗∗ -0.42∗∗∗ -0.42∗∗∗
(0.06) (0.06) (0.08) (0.08)

Set FE Yes Yes Yes Yes Yes Yes

Payment amount FE Yes Yes Yes Yes Yes Yes

Demographic controls No No Yes No No Yes

Observations 1948 1948 1948 2000 2000 2000
R2 0.02 0.07 0.09 0.05 0.08 0.09

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Each subject
makes three decisions for a given set, which give rise to two observations / composite normalized indifference
points. The first is given by the normalized indifference point for a decision over the respective long horizon.
The second is given by the product of the two normalized indifference points for the decisions over the two
respective short horizons. Set fixed effects include fixed effect for each pair of decision problems that exhibit
a front-end delay structure. Set 1: {0, 6m}, {6m, 12m} and {0m, 12m}. Set 2: {0, 4m}, {4m, 8m} {0m,
8m}. Because we randomly selected some choice lists to be presented twice to the same participant, we
sometimes have more than one observation for one of the three decisions that constitute a subadditivity set.
In those cases, we average the decisions in the two identical choice lists. Demographic controls include age,
gender and income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

5.2.4 Front-End Delay Effects

Finally, we study the link between CU and front-end delay effects. These refer to the
regularity that people exhibit greater patience in a decision problem in which both pay-
ment dates are moved forward by a constant. For example, people frequently appear
more patient in tradeoffs between {6m, 12m} than between {0, 6m}. Because our main
hypothesis is that people mentally distort the relative discount factors associated with
two delays (or even the length of the delay itself), we predicted and pre-registered that
cognitive uncertainty is uncorrelated with front-end delay effects as these experimental
effects hold the length of the delay constant. Therefore, an effective way to view these
analyses is that they are a type of placebo exercise.

As summarized in Cohen et al. (2020), front-end delay effects are often but not
always present in choices over monetary amounts. In our context, columns (1) and (4)
of Table 3 document that we find highly significant and quantitatively large evidence for
the presence of front-end delay effects. More importantly for our purposes, we find that
the correlation between front-end delay effects and cognitive uncertainty is either small
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Table 3: Cognitive uncertainty and front-end delay effects

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

(1) (2) (3) (4) (5) (6)

1 if front end delay 3.07∗∗∗ 2.56∗ 2.47∗ 2.74∗∗∗ 4.98∗∗∗ 5.18∗∗∗
(0.85) (1.32) (1.30) (0.86) (1.68) (1.67)

Front-end delay × Cognitive uncertainty 0.048 0.049 -0.055 -0.064
(0.05) (0.05) (0.05) (0.05)

Cognitive uncertainty -0.30∗∗∗ -0.28∗∗∗ -0.24∗∗∗ -0.23∗∗∗
(0.05) (0.05) (0.06) (0.06)

Set FE Yes Yes Yes Yes Yes Yes

Payment amount FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 2393 2393 2393 2337 2337 2337
R2 0.00 0.05 0.06 0.01 0.05 0.05

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Set fixed
effects include fixed effect for each pair of decision problems that exhibit a front-end delay structure.
Set 1: {0, 6m} and {6m, 12m}. Set 2: {0, 4m} and {4m, 8m}. Demographic controls include age,
gender and income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

and statistically insignificant (columns (2)–(3)) or even goes in the opposite direction
(columns (5)–(6)). This is despite a relatively large sample size of N = 2,393 decisions
(645 subjects) in Money Main and N = 2,337 decisions (500 subjects) in Voucher Main.

5.2.5 Cognitive Load Effects

Using manipulations of time pressure or enforced waiting periods, the existing literature
has documented that the availability of cognitive resources affects intertemporal choices
(Deck and Jahedi, 2015; Imas et al., 2021; Ebert, 2001). While these studies typically
implemented relatively short time delays and found higher impatience when the avail-
ability of cognitive resources is decreased, Ebert (2001) and Ebert and Prelec (2007)
actually find that time pressure strongly affects the hyperbolicity of the discount func-
tion, such that for sufficiently long time horizons, time pressure actually leads to higher
patience. Our framework predicts these patterns if and only if a decreased availability
of cognitive resources increases cognitive noisiness.

To test the hypothesis that cognitive load increases both cognitive noise and the
hyperbolicity of discounting, we designed the treatment Money Load. Participants are
taskedwith simultaneously (i) completing the intertemporal choice problems overmoney
described in the previous section and (ii) adding up red numbers that appeared at ran-
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Table 4: Effect of cognitive load and complexity manipulations on discounting

Dependent variable:
Normalized indifference point

Money Main Repl. vs. Money Load Money Main Repl. vs. Money Complex Dates

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Time delay (years) -5.01∗∗∗ -4.89∗∗∗ -4.80∗∗∗ -4.85∗∗∗ -5.01∗∗∗ -4.97∗∗∗ -4.80∗∗∗ -4.84∗∗∗
(0.55) (0.55) (0.63) (0.62) (0.55) (0.55) (0.63) (0.62)

Time delay × 1 if Load 1.58∗∗ 1.64∗∗ 1.96∗∗ 2.00∗∗
(0.78) (0.78) (0.82) (0.82)

1 if Load -2.59 -2.34 -2.84 -2.68
(3.07) (3.04) (3.05) (3.04)

Time delay × 1 if Complex Dates 2.96∗∗∗ 2.97∗∗∗ 3.33∗∗∗ 3.36∗∗∗
(0.79) (0.79) (0.88) (0.88)

1 if Complex Dates 2.93 3.17 1.06 1.38
(2.99) (3.00) (2.94) (2.94)

Payment amount FE No Yes No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes No Yes

Observations 2428 2428 1352 1352 2381 2381 1339 1339
R2 0.07 0.10 0.06 0.07 0.07 0.08 0.06 0.07

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Demographic controls
include age, gender and income bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

dom intervals next to the choice list.21 An obvious issue with this load manipulation
is that cognitive effort and resulting response times are endogenous: in principle, it is
conceivable that subjects in the load condition take substantially longer to complete the
tasks, so that no effect on CU would be visible. To prevent this, we implemented a time
limit of 25 seconds per choice list in each of these conditions, including in a replication
of treatment Money Main that we administered in the same experimental sessions. We
conducted these experiments with a separate sample of 617 participants, in which each
participant was randomly assigned to one of four treatments: Money Load, Money Main
Replication and two further treatments discussed in Section 6.

We find, first, that our cognitive loadmanipulation increases stated CU relative to the
replication of our main treatment by 5 percentage points (19%), p < 0.01. Second, we
observe that cognitive load indeed leads to substantially more hyperbolic discounting,
see columns (1)–(2) and (5)–(6) of Table 4. We interpret these patterns as suggesting
that cognitive load increases the magnitude of cognitive noise, which in turn increases
the hyperbolicity of discounting.

21We also separately implemented a within-subject design that manipulated the presence of the num-
ber counting task within subjects across tasks. The results are very similar and reported in an earlier
version of this paper (Enke and Graeber, 2021).
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5.3 Taking Stock: Modeling Approaches vs. Evidence

As noted earlier, our primary contribution is to document the relevance of noisy cog-
nition for intertemporal choice, rather than to definitively disentangle different classes
of random choice models that often make similar predictions (and each of which come
in different variants). This being said, a comparison of the empirical results with the
discussion in Section 2 allows us to draw some tentative conclusions about which types
of models explain the patterns better than others. A crucial role in this regard play the
choice patterns regarding subadditivity and front-end delay effects. The main reason
is that the cognitive-noise-in-action-space framework and the random response model
that we sketched in Section 2 predict that cognitive noise is correlated with subadditiv-
ity but not with front-end delay effects. Random preference models and the cognitive
noise model of Gabaix and Laibson (2022), on the other hand, both predict that cogni-
tive noise is linked to front-end delay effects but not to subadditivity. Given that we find
that cognitive uncertainty is predictive of subadditivity but not of front-end delay effects,
we conclude that random preference models and the approach of Gabaix and Laibson
(2022) and Gershman and Bhui (2019) do not explain all aspects of the evidence.

5.4 Robustness

Omitted variables. Given that all analyses up to this point are correlational in nature,
a potential concern is the existence of a stable participant characteristic other than cog-
nitive uncertainty that somehow generates the results. While we are not aware of other
characteristics that could plausibly lead to higher implied impatience over short hori-
zons, yet lower implied impatience over long horizons, we perform a robustness check
by including participant fixed effects in our main regression in Table 1. As we document
in Appendix Table 9, the results remain statistically significant conditional on these sub-
ject fixed effects.

Measurement error. Our paper contributes to a literature on noise and measurement
error in experiments (e.g., Gillen et al., 2019; Andersson et al., 2020). While we now
discuss why measurement error in the sense of random response noise alone cannot
explain our results, the measurement of cognitive uncertainty provides a useful comple-
ment to this literature because it allows researchers to predict systematic (rather than
mean-zero) distortions of intertemporal decisions and preference estimates.

In principle, CU and intertemporal choices could be subject to a form of correlated
experimental measurement error (Gillen et al., 2019) that would potentially create a
mechanical relationship between the occurrence of strictly positive CU and the sensitiv-
ity of intertemporal decisions to delays. To illustrate, suppose that all subjects actually
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exhibit zero cognitive noise. Further suppose that (i) more inattentive subjects are more
likely to exhibit randommeasurement error in the CU elicitation that leads them to state
strictly positive CU, and (ii) that this same inattention will also lead subjects to make
intertemporal decisions that are insensitive to time delays. Under this logic, CU and in-
tertemporal decisions would be mechanically correlated. If this were the case, however,
we would expect that CU has no predictive power for intertemporal decisions within the
sample of strictly positive CU. As Figure 3 showed, this is counterfactual as the sensitivity
of decisions to delays strongly decreases in CU, also conditional on CU > 0.

A second approach to investigate the importance of measurement error in the CU elic-
itation for our results is to look at subjects’ across-task variability in CU, as presumably
those subjects that are more inattentive and exhibit greater measurement error should
make CU statements that are more variable. To study this, we compute the subject-level
standard deviation of CU across experimental decisions, and study whether it is corre-
lated with the sensitivity of decisions with respect to the delay, just like we did for the
level of CU in Table 1. We find that the subject-level SD and sensitivity to delays are
essentially uncorrelated (p = 0.87). This again speaks against the relevance of measure-
ment error in CU for generating our main findings.

Direct elicitation experiments without price list format. Up to this point, all results
were derived from experiments in which intertemporal choice behavior was elicited us-
ing choice lists. While this elicitation procedure is standard, it raises the potential con-
cern that price lists have their own effects on behavior, in particular that they may in-
duce subjects to switch around the middle of the list (e.g., Beauchamp et al., 2019). To
document that the logic of CU and inelasticity extends to another elicitation technique,
treatment Money Main also included a direct elicitation component that has no visual
price list grid, see Section 3. Here, subjects were directly asked how much they value
a hypothetical payment of $y in t = t2 in terms of a payment to be received today. To
answer this question, subjects directly typed a dollar amount into a text box. After each
decision, subjects indicate their cognitive uncertainty by indicating their subjective prob-
ability that their true valuation for the later payment actually lies within ±$1 of their
stated valuation. Appendix D shows that these direct elicitation experiments deliver
very similar results as the ones reported above: (i) CU is significantly correlated with
across-trial choice variability; (ii) CU is strongly correlated with short-run impatience
over one week; (iii) CU is correlated with decreasing impatience; (iv) CU is correlated
with subadditivity; and (iv) CU is again uncorrelated with front-end delay effects.
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6 Complexity and Hyperbolic Discounting

A main implication of a preferences-based account is that the hyperbolic shape of dis-
counting is fixed. Our account, on the other hand, predicts that economically-relevant
phenomena such as short-run impatience and hyperbolic discounting will be more pro-
nounced in environments that increase cognitive noisiness. The effects of cognitive load
(Section 5.2.5) already hint at the critical role of cognitive resources. We here conjecture
that themagnitude of cognitive noise will also be affected of the exogenously determined
complexity of the decision problem.

We manipulate the complexity of processing the time delay. Specifically, in Money
Complex Dates, we implemented the same procedures as in Money Main, except that all
payout dates in the choice lists were represented as a math task. For instance, “In 1 year”
could be represented as “In (6*2/3-3) years AND (3*6/2-9) months AND (5*4/2-10)
days.”22 As described in Section 5.2.5, the complexity experiments were conducted in
joint sessions with the load manipulation and a replication of the baseline condition
(N = 617 participants, random assignment to treatments). Here, too, we implemented
a time limit of 25 seconds per choice. Our hypothesis is that the treatment increases
cognitive noise in the determination of the utility-maximizing decision. While the treat-
ment likely does not change uncertainty over one’s true discount factor, it plausibly
changes the difficulty of combining the discount factor with the time delay (recall that
we embrace different potential sources of cognitive noise).

We find that the complexity variation substantially increases stated CU relative to
the replication of our main treatment, by 12 percentage points (50%). As columns (5)–
(8) of Table 4 show, the complexity manipulation also makes discounting decisions sub-
stantially less sensitive to variation in the time delay, which produces more pronounced
hyperbolic discounting. These results are at odds with all models that formalize hyper-
bolicity as reflecting stable preferences. Instead, we interpret them as suggesting that
higher complexity causes more pronounced cognitive noise, which leads to more pro-
nounced hyperbolicity.

7 Model Estimations

We proceed by estimating eq. (2) from Section 2 to gauge how well such a reduced-form
model fits the data, and howmuch themeasurement of cognitive uncertainty contributes
to model fit. In eq. (2), the weight λ depends on the magnitude of cognitive noise. We do

22In another complexity manipulation, treatmentMoney Complex Amounts, we instead represented the
monetary amount for choice option A as a math problem, such as “$(4*8/2)+(8*9/2)-12”. The results
of this treatment are very similar to those for Money Complex Dates, see Appendix Table 10. For example,
average CU increases by 10 percentage points (42%) in this treatment.
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not observe cognitive noise itself but cognitive uncertainty, denoted pCU . We proceed by
using the heuristic approximation λ= 1−αpCU , where α≥ 0 is a nuisance parameter to
be estimated. With CRRA utility and larger-later payment x ≡ ct2

≥ 1, eq. (2) suggests
that the mean observed choice in our experiments is determined as

E[ao] = λ(pCU) ·E[s] · x + (1−λ(pCU)) · d · x

= (1−α · pCU) · (δ∆t)1/γ · x + (α · pCU) · d · x (9)

This equation, amended by a mean-zero error term, can be estimated using straightfor-
ward nonlinear least squares techniques. Specifically, we observe ao, ∆t and pCU , and
estimate δ, d and α.23 To assess and compare model fit, we estimate four model variants.
First, a baseline exponential discounting model that ignores cognitive noise (i.e., we set
α = 0). Second, also for benchmarking purposes, a β − δ model, which also precludes
a role for cognitive noise. Finally, we estimate both of these variants including CU.2⁴

Our objective here is to pit CU-amendedmodels against canonical benchmarkmodels
that have a direct psychological motivation, rather than to argue that there are no other
functional forms that fit the data better. As discussed in the Introduction, functional
forms such as the generalized hyperbola were in fact designed to fit observed data well,
but are arguably not directly psychologically microfounded in the way that accounts of
present-focused preferences or cognitive noise are.

Notice that, following the discussion in Section 2, the estimate of d has two potential
interpretations. Under the Bayesian cognitive noise interpretation, d is a constant cog-
nitive default action that people anchor on. Under the random response interpretation,
d is the mean of the distribution function F(·) from which random responses are drawn.

Aggregate estimates. We begin by estimating the model across subjects, treating the
data as if it was generated by one representative agent. Table 5 summarizes the model
estimates across the three different types of experiments that we report in this paper.
There are five main takeaways. First, in line with prior research, a pure exponential dis-
countingmodel fits the data poorly. Second, a beta-delta model fits the data considerably
better, but not nearly as well as a model that includes both exponential discounting and
CU (see the Akaike Information Criterion values in the last row). Third, a model that
includes both a role for taste-based present bias and CU performs best. This – in line
with our results on front-end delay effects – again highlights that a desire for imme-
diate gratification and cognitive noise are distinct and complementary objects. Fourth,

23The risk aversion parameter, γ, is separately estimated on our risky choice experiments in the final
part of the study, and taken as given in the intertemporal choice estimations.

2⁴The amended estimation equation for β−δ−CU is given by ao = (1−α·pCU)·(βδ∆t)1/γ+(α·pCU)·d.
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Table 5: Estimates of model parameters across experiments

Money Main MPL Money Main Direct Elicitation Voucher Main MPL

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β −δ β −δ β −δ
δ β −δ δ− CU −CU δ β −δ δ− CU −CU δ β −δ δ− CU −CU

δ̂ 0.96 0.98 0.97 0.98 0.97 0.99 0.98 0.99 0.94 0.95 0.95 0.95

β̂ 0.77 0.86 0.76 0.85 0.89 0.95

d̂ 0.51 0.49 0.52 0.49 0.57 0.56

AIC 64,148 63,165 61,904 61,701 32,247 31,391 30,993 30,791 46,980 46,652 45,853 45,817

Notes. Estimates of different versions of (9). MPL = multiple price list. AIC = Akaike Information Criterion. Each column
corresponds to a separate model estimation. Columns (1), (5), (9): set β = 1 and α = 0. Columns (2), (6), (10): set α = 0.
Columns (3), (7), (11): set β = 1. All estimated standard errors (computed based on clustering at the subject level) are smaller
than 0.02. In estimations that include CU, we also estimate the nuisance parameter α (not reported). All estimations are
conducted by setting a CRRA parameter of γ= 0.94, which is the population-level risk aversion that was separately estimated
on the risky choice data. The exponential parameter δ is the monthly discount factor.

ignoring CU in the estimations considerably inflates the role of present bias β . Fifth,
the estimates are strikingly similar across experiments; in particular, the estimated d is
always around 50% of the larger-later reward.

Figure 5 visualizes the fit of the various estimated models for treatmentMoney Main,
separately for decision problems in which the early payment date is today or in the
future. The figures are constructed by generating predicted values, based on the param-
eter estimates in Table 5. We again see that exponential discounting fits the data poorly.
Likewise, almost by construction, the canonical beta-delta model fits poorly when the
early payment date is in the future.2⁵ On the other hand, when the early payment date
is today, the beta-delta model performs well in fitting behavior over relatively short time
delays, but (as is well-known) performs relatively poorly in capturing the strong flatten-
ing out of the observed data for long time delays.

The delta-CUmodel, on the other hand, captures several key aspects of the data. First,
it partly accounts for some of the extreme impatience over short horizons. Second, the
model accounts much better for the strong compression effects over long horizons. Third,
the delta-CU model matches the data reasonably well both when the early payment date
is today and when it is in the future. Note that even with an estimated cognitive default
of around 50%, predicted indifference points in the delta-CU model do not converge to
50% for very long time horizons, but a significantly lower value, mirroring the conver-
gence pattern in the actual data. The reason is that even though cognitive noise increases
in the time horizon as suggested by Figure 2, this relationship is strongly concave and
essentially flat for delays longer than 24 months. Thus, λ does not converge to one.
As a consequence, decisions in the delta-CU model attribute strictly positive weight to

2⁵The different model fit for the exponential discounting and the beta-delta model for the case of
t1 > 0 result from the fact that we estimate both models on all data, including those with t1 = 0.
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Figure 5: Model fit vs. data in Money Main. The model predictions are computed as fitted values of the
parameter estimates in Table 5.

the discounted-utility maximizing action a∗ even for very long horizons, which pulls
observed indifference points below 50%.

Individual-Level Estimates. Estimating any intertemporal choice model at an aggre-
gate level is problematic because participants might have heterogeneous discount factors
(Weitzman, 2001; Jackson and Yariv, 2014). Therefore, we proceed by estimating the
model at the level of individual subjects.2⁶ We report the results in Appendix Table 11.
To summarize, there is substantial individual-level variation in estimated parameters.
For most parameters, the center of the estimated coefficient distributions is line with
the parameters in our representative-agent estimation.2⁷

Discussion. Our estimations consistently suggest that a potential cognitive default ac-
tion or mean random response is given by roughly 50% of the larger-later payment. Of
course, given the available evidence, we do not intend to take a strong stance on whether
this estimate will be context-specific. While we suspect that it will be (see the discussion
in the Conclusion), it is also interesting to note that the “central” nature of the estimated
d jives well with a large body of work in both economics and psychology that suggests
that people’s heuristic responses to decision problems tend to be intermediate in nature.
This effect is generally referred to as “central tendency effect” in psychology (Holling-
worth, 1910), and has also been to cognitive noise (Xiang et al., 2021). In economics, a
related effect is the so-called compromise effect (see, e.g., Beauchamp et al., 2019, for
an example in risky choice).

2⁶To increase power in these individual-level estimations, we restrict attention to treatment Money
Main, in which each subject completed both 12 MPLs and 6 direct elicitation tasks.

2⁷An exception is β . We find less pronounced present bias (larger β) in our individual estimations than
the aggregate ones, in line with the theoretical insight that aggregate quasi-hyperbolic discounting can
partly result from the aggregation of individuals with heterogeneous discount factors.
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8 Advice Following

In contrast to preferences-based theories of extreme short-run impatience, an account of
cognitive uncertainty predicts that short-run impatient choices will often be associated
with a sense of “nervousness” that the decision reflects an error. Thus, people may be
open to (or even actively seek out) advice about how to behave. To study the relevance
of cognitive uncertainty for choice architecture, we test whether it is indeed true that
people with cognitive uncertainty are more likely to follow the advice of an outside ex-
pert. This is arguably a strong hypothesis because variation in intertemporal decisions
surely partly reflects genuine heterogeneity in preferences (e.g., in δ). Given that out-
side experts will rarely know the decision-maker’s true preferences, following the advice
of an expert is a double-edged sword: it may reduce the probability of making mistakes,
but increase the probability of doing something that goes against one’s individual pref-
erences.

To assess the relevance of cognitive uncertainty for advice-seeking and choice ar-
chitecture, we implement treatment Voucher Advice. This treatment follows exactly the
same protocol as Voucher Main, except that it introduces a piece of advice. In the first
choice list, we fixed the early payment date at today and varied the delayed payment
date between one week and two months. After the participant had indicated their de-
cisions in this choice list and their cognitive uncertainty, we presented a surprise an-
nouncement:2⁸

We surveyed a few academic economists about which advice they would give
to participants in this study regarding which decisions to make. These academic
economists recommend that participants choose the delayed Voucher A in all
rows of the choice list you just completed. We recognize that decisions like these
depend on your own preferences, so we neither encourage nor discourage you
to follow this advice. However, should you wish to revise your decision, you can
do so in the choice list below. The choices that are indicated right now are those
that you made yourself a few seconds ago.

We pre-registered the sample size and our prediction that cognitive uncertainty is asso-
ciated with a higher likelihood of following expert advice by revising a previous decision
at https://aspredicted.org/jk5s5.pdf.

Experiments like these are potentially subject to experimenter demand effects, ac-
cording to which participants revise their decisions purely because they believe that the

2⁸No deception was involved in the design of the study because we actually polled Harvard-based
economists for advice. We suspect that the reason why people are comfortable articulating advice in such
situations is that – over timeframes of one week to two months as in our study – even mildly impatient
decisions imply absurdly high discount rates.
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Choice revisions as function of cognitive uncertainty

Figure 6: Probability of revising decision towards higher patience, as a function of cognitive uncertainty
(N = 153). The figure is constructed controlling for the normalized indifference point before seeing advice.
In other words, the y-axis shows the residual probability of revising the decision after the initial choice is
partialed out through an OLS regression.

experimenter would like them to. In our context, this “level effect” is irrelevant because
we are only interested in the differential responsiveness to advice of participants with
and without cognitive uncertainty. Our identifying assumption is therefore that cogni-
tively uncertain subjects are not subject to stronger demand effects.

In our data, 34% of participants revise their decision upon seeing advice, where al-
most all revisions are in the direction of higher patience. Figure 6 shows the relationship
between cognitive uncertainty and choice revisions towards the advice of full patience.2⁹
We see that participants with strictly positive cognitive uncertainty are 16 percentage
points (80%) more likely to revise their choice, p < 0.01.

9 Discussion

Contribution and relevance. Much of behavioral economics views intertemporal choice
and its famous empirical regularities as largely determined by non-standard discount
functions (preferences). This paper argues for and empirically documents an important
role of cognitive noise and complexity for intertemporal decision-making. We document
that a large share of short-run impatience, hyperbolic discounting and subadditivity
effects are driven by bounded rationality and cognitive noise, rather than impatient

2⁹Because subjects with higher cognitive uncertainty on average state lower indifference points in their
initial decision, they have more “room” to adjust. We control for this by residualizing the y-axis of Figure 6
from the initial normalized indifference point through a linear regression (the results are even stronger
without this adjustment).
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preferences.
Distinguishing whether intertemporal choice is only driven by non-standard prefer-

ences or also by cognitive limitations is important for at least three reasons. First, triv-
ially, the welfare implications differ. Second, as we have shown, mistakes (and aware-
ness thereof) generate systematic demand for expert advice or policy that is absent in
preferences-based models. Third, unlike preferences-based models, accounts of cogni-
tive noise predict that decisions should be strongly influenced by the complexity of the
decision environment, which is practically relevant.

Limitations. As noted in the Introduction, our paper does not purport to explain all
intertemporal choice anomalies. First, we focused on the most well-known and most
robust regularities that relate to variation in the time delay, but ignored those regularities
that pertain to payout effects (gain-loss asymmetries and magnitude effects). Second,
our study does not address framing effects, such as the speed-up / delay asymmetry
(Loewenstein and Prelec, 1992) or date / delay effects (Read et al., 2005). At the same
time, we do conjecture a potential link between such framing effects and our work: if
one choice option is presented to people as the default that they can “speed up” at a cost,
it seems plausible that people use that option as a cognitive default. Based on this idea,
we conjecture that speed-up / delay asymmetries are more pronounced when cognitive
uncertainty is high.

Links between literatures on risky and intertemporal choice. In classical models of
decision-making, preferences over risk and intertemporal tradeoffs are captured by sepa-
rate parameters. In practice, however, it is well-known that intertemporal decisions are
a function of risk, for example that the presence of uncertainty can confound the ex-
perimental measurement of time preferences (e.g., Halevy, 2008). In conjunction with
the results reported in Enke and Graeber (2022), the findings in this paper suggest that
theremay be a second deep link between intertemporal and risky decisions, which is that
they are linked through the presence of cognitive noise. For example, if cognitive noise
leads to both more extreme probability weighting and more pronounced diminishing
impatience, then conventional experimental techniques to measure preference param-
eters will identify links between the two phenomena (as in, e.g., Epper et al., 2011).
Another example concerns the well-known correlations between cognitive ability, risk
taking and patience (e.g., Dohmen et al., 2010; Falk et al., 2018). If cognitive ability
(as measured in experiments or surveys) partly picks up cognitive noise, then this may
explain why empirical measures of risk and time preferences are correlated both with
each other and with cognitive ability.

36



References

Agranov, Marina and Pietro Ortoleva, “Stochastic choice and preferences for random-
ization,” Journal of Political Economy, 2017, 125 (1), 40–68.

Andersson, Ola, Håkan J Holm, Jean-Robert Tyran, and Erik Wengström, “Robust
inference in risk elicitation tasks,” Journal of Risk and Uncertainty, 2020, 61 (3), 195–
209.

Andreoni, James, Christina Gravert, Michael A Kuhn, Silvia Saccardo, and Yang
Yang, “Arbitrage or narrow bracketing? On using money to measure intertemporal
preferences,” Technical Report, National Bureau of Economic Research 2018.

Arieli, Amos, Yaniv Ben-Ami, and Ariel Rubinstein, “Tracking decision makers under
uncertainty,” American Economic Journal: Microeconomics, 2011, 3 (4), 68–76.

Arts, Sara, Qiyan Ong, and Jianying Qiu, “Measuring subjective decision confidence,”
Working Paper, 2020.

Beauchamp, Jonathan P, David I Laibson, and Christopher F Chabris, “Measuring
and controlling for the compromise effect when estimating risk preference parame-
ters,” Experimental Economics, 2019, pp. 1–31.

Benzion, Uri, Amnon Rapoport, and Joseph Yagil, “Discount rates inferred from deci-
sions: An experimental study,” Management science, 1989, 35 (3), 270–284.

Brocas, Isabelle, Juan D Carrillo, and Jorge Tarrasó, “How long is a minute?,” Games
and Economic Behavior, 2018, 111, 305–322.

Bulley, Adam, Karolina Lempert, Colin Conwell, and Muireann Irish, “Intertemporal
choice reflects value comparison rather than self-control: insights from confidence
judgments,” PsyArXiv, 2021.

Butler, David J and Graham C Loomes, “Imprecision as an account of the preference
reversal phenomenon,” American Economic Review, 2007, 97 (1), 277–297.

Carrera, Mariana, Heather Royer, Mark Stehr, Justin Sydnor, and Dmitry Taubin-
sky, “Who chooses commitment? Evidence and welfare implications,” The Review of
Economic Studies, 2022, 89 (3), 1205–1244.

Chakraborty, Anujit, “Present bias,” Econometrica, 2021, 89 (4), 1921–1961.

37



, Evan M Calford, Guidon Fenig, and Yoram Halevy, “External and internal consis-
tency of choices made in convex time budgets,” Experimental economics, 2017, 20 (3),
687–706.

, Yoram Halevy, and Kota Saito, “The relation between behavior under risk and over
time,” American Economic Review: Insights, 2020, 2 (1), 1–16.

Cohen, Jonathan, Keith Marzilli Ericson, David Laibson, and John Myles White,
“Measuring time preferences,” Journal of Economic Literature, 2020, 58 (2), 299–347.

Curry, David, “Uber Eats Revenue and Usage Statistics (2021),” 2021.

Danz, David, Lise Vesterlund, and Alistair J Wilson, “Belief elicitation and behavioral
incentive compatibility,” American Economic Review, 2022.

Dasgupta, Partha and Eric Maskin, “Uncertainty and hyperbolic discounting,” Ameri-
can Economic Review, 2005, 95 (4), 1290–1299.

Deck, Cary and Salar Jahedi, “The effect of cognitive load on economic decision mak-
ing: A survey and new experiments,” European Economic Review, 2015, 78, 97–119.

Dekel, Eddie, Barton L Lipman, and Aldo Rustichini, “Temptation-driven prefer-
ences,” The Review of Economic Studies, 2009, 76 (3), 937–971.

Dohmen, Thomas, Armin Falk, David Huffman, and Uwe Sunde, “Are risk aversion
and impatience related to cognitive ability?,” American Economic Review, 2010, 100
(3), 1238–60.

, , , and , “The robustness and pervasiveness of sub-additivity in intertemporal
choice,” in “Working Paper” 2017.

Ebert, Jane EJ, “The role of cognitive resources in the valuation of near and far future
events,” Acta psychologica, 2001, 108 (2), 155–171.

and Drazen Prelec, “The fragility of time: Time-insensitivity and valuation of the
near and far future,” Management science, 2007, 53 (9), 1423–1438.

Enke, Benjamin and Thomas Graeber, “Cognitive uncertainty in intertemporal
choice,” Technical Report, National Bureau of Economic Research 2021.

and , “Cognitive uncertainty,” Technical Report, National Bureau of Economic Re-
search 2022.

, Ricardo Rodriguez-Padilla, and Florian Zimmermann, “Moral Universalism: Mea-
surement and Economic Relevance,” Management Science, forthcoming.

38



Epper, Thomas, Ernst Fehr, Helga Fehr-Duda, Claus Thustrup Kreiner, David Dreyer
Lassen, Søren Leth-Petersen, and Gregers Nytoft Rasmussen, “Time discounting
and wealth inequality,” American Economic Review, 2020, 110 (4), 1177–1205.

, Helga Fehr-Duda, and Adrian Bruhin, “Viewing the future through a warped lens:
Why uncertainty generates hyperbolic discounting,” Journal of risk and uncertainty,
2011, 43 (3), 169–203.

Ericson, Keith Marzilli and David Laibson, “Intertemporal choice,” in “Handbook of
Behavioral Economics: Applications and Foundations 1,” Vol. 2, Elsevier, 2019, pp. 1–
67.

Falk, Armin, Anke Becker, Thomas Dohmen, Benjamin Enke, David Huffman, and
Uwe Sunde, “Global evidence on economic preferences,” The Quarterly Journal of
Economics, 2018, 133 (4), 1645–1692.

, , , David Huffman, and Uwe Sunde, “The Preference Survey Module: A Vali-
dated Instrument for Measuring Risk, Time, and Social Preferences,” Working Paper,
2015.

Fennell, John and Roland Baddeley, “Uncertainty plus prior equals rational bias: An
intuitive Bayesian probability weighting function.,” Psychological Review, 2012, 119
(4), 878.

Frydman, Cary and Lawrence Jin, “Efficient Coding and Risky Choice,” Quarterly Jour-
nal of Economics, 2021.

and Salvatore Nunnari, “Cognitive Imprecision and Strategic Behavior,” Working
Paper, 2021.

Gabaix, Xavier, “Behavioral inattention,” in Douglas Bernheim, Stefano DellaVigna, and
David Laibson, eds., Handbook of Behavioral Economics-Foundations and Applications
2, Elsevier, 2019, p. 261.

and David Laibson, “Myopia and discounting,” Technical Report, National bureau
of economic research 2022.

Gershman, Samuel J and Rahul Bhui, “Rationally inattentive intertemporal choice,”
bioRxiv, 2019, p. 680652.

Gillen, Ben, Erik Snowberg, and Leeat Yariv, “Experimenting with Measurement Er-
ror: Techniques with Applications to the Caltech Cohort Study,” Journal of Political
Economy, 2019.

39



Gul, Faruk and Wolfgang Pesendorfer, “Temptation and self-control,” Econometrica,
2001, 69 (6), 1403–1435.

Gupta, Neeraja, Luca Rigott, and Alistair Wilson, “The Experimenters’ Dilemma: In-
ferential Preferences over Populations,” arXiv preprint arXiv:2107.05064, 2021.

Halevy, Yoram, “Strotz meets Allais: Diminishing impatience and the certainty effect,”
American Economic Review, 2008, 98 (3), 1145–62.

, “Some comments on the use of monetary and primary rewards in the measurement
of time preferences,” Unpublished manuscript, 2014.

, “Time consistency: Stationarity and time invariance,” Econometrica, 2015, 83 (1),
335–352.

Harrison, Glenn W, Morten I Lau, and E Elisabet Rutström, “Dynamic consistency in
Denmark: A longitudinal field experiment,” 2005.

He, Lisheng, Russell Golman, and Sudeep Bhatia, “Variable time preference,” Cogni-
tive psychology, 2019, 111, 53–79.

Heng, Joseph A, MichaelWoodford, and Rafael Polania, “Efficient sampling and noisy
decisions,” Elife, 2020, 9, e54962.

Hollingworth, Harry Levi, “The central tendency of judgment,” The Journal of Philoso-
phy, Psychology and Scientific Methods, 1910, 7 (17), 461–469.

Imas, Alex, Michael Kuhn, and Vera Mironova, “Waiting to choose: The Role of Delib-
eration in Intertemporal Choice,” American Economic Journal: Microeconomics, 2021.

Jackson, Matthew O and Leeat Yariv, “Present bias and collective dynamic choice in
the lab,” American Economic Review, 2014, 104 (12), 4184–4204.

Kable, Joseph W and Paul W Glimcher, “An "as soon as possible" effect in human
intertemporal decision making: behavioral evidence and neural mechanisms,” Journal
of neurophysiology, 2010, 103 (5), 2513–2531.

Khaw, Mel Win, Ziang Li, and Michael Woodford, “Cognitive imprecision and small-
stakes risk aversion,” The review of economic studies, 2021, 88 (4), 1979–2013.

Laibson, David, “Golden eggs and hyperbolic discounting,” The Quarterly Journal of
Economics, 1997, 112 (2), 443–478.

Lipman, Barton L and Wolfgang Pesendorfer, “Temptation,” in “Advances in eco-
nomics and econometrics: Tenth World Congress,” Vol. 1 Citeseer 2013, pp. 243–288.

40



Loewenstein, George and Drazen Prelec, “Anomalies in intertemporal choice: Evi-
dence and an interpretation,” The Quarterly Journal of Economics, 1992, 107 (2), 573–
597.

Lu, Jay and Kota Saito, “Random intertemporal choice,” Journal of Economic Theory,
2018, 177, 780–815.

Martino, Benedetto De, Sebastian Bobadilla-Suarez, Takao Nouguchi, Tali Sharot,
and Bradley C Love, “Social information is integrated into value and confidence judg-
ments according to its reliability,” Journal of Neuroscience, 2017, 37 (25), 6066–6074.

, Stephen M Fleming, Neil Garrett, and Raymond J Dolan, “Confidence in value-
based choice,” Nature neuroscience, 2013, 16 (1), 105–110.

Mazur, James E, “An adjusting procedure for studying delayed reinforcement,” Com-
mons, ML.; Mazur, JE.; Nevin, JA, 1987, pp. 55–73.

Ok, Efe A and Yusufcan Masatlioglu, “A theory of (relative) discounting,” Journal of
Economic Theory, 2007, 137 (1), 214–245.

Polania, Rafael, Michael Woodford, and Christian C Ruff, “Efficient coding of subjec-
tive value,” Nature neuroscience, 2019, 22 (1), 134–142.

Read, Daniel, “Is time-discounting hyperbolic or subadditive?,” Journal of risk and un-
certainty, 2001, 23 (1), 5–32.

, Shane Frederick, Burcu Orsel, and Juwaria Rahman, “Four score and seven years
from now: The date/delay effect in temporal discounting,”Management Science, 2005,
51 (9), 1326–1335.

Regenwetter, Michel, Daniel R Cavagnaro, Anna Popova, Ying Guo, Chris Zwilling,
Shiau Hong Lim, and Jeffrey R Stevens, “Heterogeneity and parsimony in intertem-
poral choice.,” Decision, 2018, 5 (2), 63.

Rubinstein, Ariel, ““Economics and psychology”? The case of hyperbolic discounting,”
International Economic Review, 2003, 44 (4), 1207–1216.

Soutschek, Alexander, Marius Moisa, Christian C Ruff, and Philippe N Tobler, “Fron-
topolar theta oscillations link metacognition with prospective decision making,” Na-
ture Communications, 2021, 12 (1), 1–8.

Sozou, Peter D, “On hyperbolic discounting and uncertain hazard rates,” Proceedings
of the Royal Society of London. Series B: Biological Sciences, 1998, 265 (1409), 2015–
2020.

41



Sprenger, Charles, “Judging experimental evidence on dynamic inconsistency,” Ameri-
can Economic Review, 2015, 105 (5), 280–85.

Thaler, Richard, “Some empirical evidence on dynamic inconsistency,” Economics letters,
1981, 8 (3), 201–207.

Toussaert, Séverine, “Eliciting Temptation and Self-Control Through Menu Choices: A
Lab Experiment,” Econometrica, 2018, 86 (3), 859–889.

Tversky, Amos and Daniel Kahneman, “Judgment under uncertainty: Heuristics and
biases,” science, 1974, 185 (4157), 1124–1131.

Vieider, FerdinandM, “Noisy coding of time and reward discounting,” Technical Report,
Ghent University, Faculty of Economics and Business Administration 2021.

Weitzman, Martin L, “Gamma discounting,” American Economic Review, 2001, 91 (1),
260–271.

Woodford, Michael, “Modeling imprecision in perception, valuation, and choice,” An-
nual Review of Economics, 2020, 12, 579–601.

Xiang, Yang, Thomas Graeber, Benjamin Enke, and Samuel Gershman, “Confi-
dence and Central Tendency in Perceptual Judgment,” Attention, Perception and Psy-
chophysics, 2021.

Yeung, Nick and Christopher Summerfield, “Metacognition in human decision-
making: confidence and error monitoring,” Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 2012, 367 (1594), 1310–1321.

Zauberman, Gal, B Kyu Kim, Selin A Malkoc, and James R Bettman, “Discount-
ing time and time discounting: Subjective time perception and intertemporal pref-
erences,” Journal of Marketing Research, 2009, 46 (4), 543–556.

42



ONLINE APPENDIX

A Derivations for Bayesian Cognitive Noise Model

A.1 Model Setup

Below we derive the main behavioral predictions of the Bayesian cognitive noise model
introduced in Section 2. Recall that the DM’s observed action given a cognitive signal is
assumed to be the posterior mean:3⁰

ao = E[a∗|S = s] = λs+ (1−λ)d with λ= n2/(n1 + n2) (10)

A more precise mental simulation (higher n2) has a negative effect on the weighting
factor λ, which implies a lower weight on the cognitive default action. In the follow-
ing subsection, we will thus focus on deriving behavioral predictions for changes in λ.
The characterization of cognitive uncertainty (and its relationship to cognitive noise) is
identical to the one provided in the Appendix of Enke and Graeber (2022).

A central intuition about the determinants of cognitive noise in intertemporal deci-
sions is that longer delays are harder to simulate. In Section 4, we confirmed that stated
cognitive uncertainty is increasing and strongly concave in the length of the delay un-
der consideration. To accommodate this, we derive our predictions for the general case
where λ is either constant or a decreasing concave function of∆t. Specifically, we model
an exponentially decaying relationship between cognitive noise and time delays:

λ := λ(t) = c + be−k∆t . (11)

with positive k and c, b ∈ [0, 1]. For b = 0, λ is constant in the time delay. In the proofs
we will distinguish between different cases wherever necessary.

A.2 Derivations for Behavioral Predictions

All theorems and derivations in this subsection will be provided for a given subject’s
mean observed action, i.e., their average response aggregating across many unbiased

3⁰We focus on the posterior mean mostly for tractability. The subjectively optimal action depends
on the assumption about the implicit loss function. For example, quadratic loss would imply the mean,
absolute loss would imply the median as the optimal choice. In principle, people’s subjectively expected
reward from a given response might also depend on risk preferences. In other words, subjects may exhibit
risk aversion regarding their subjective distribution about the optimal action. Irrespective of the specific
assumptions made, in the beta-binomial theoretical setup, the approximation error from assuming the
subject playing the subjective mean is likely small. The mean of a Beta(a,b) variable is a/(a + b), the
mode is (a− 1)/(a+ b− 2) and the median lies between the two.
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signals. Given E[S] = a∗, we define:

ae := E[ao] = λ · a∗ + (1−λ) · d. (12)

From Section 2, we have a∗ = u−1(δ∆t). We assume that u(c) = cα,α > 0. To simplify,
we may allow δ to absorb α and in effect take α= 1 in the proofs. We use the definitions
of RRR and δH introduced in Section 5.2.2. We will use the required rate of return per
unit of time,

r :=
RRR
∆t

, (13)

as our measure of per-period impatience. We define short horizons as those time hori-
zons where an exponential discounter behaves more patiently than a subject playing the
default action:

SH := {∆t
�

� a∗ > d} (14)

Long horizons, LH, are similarly defined by:

LH := {∆t
�

� a∗ < d} (15)

Lastly, for our convenience we will at times denote δ∆t by e−β∆t with β = − ln |δ|.
We now turn to the theoretical predictions underlying the pre-registered predictions

spelled out in Section 2.

Theorem 1 (Impatience over different time horizons).

(i) Higher cognitive precision leads to less per-period impatience over short horizons.

∂ r
∂ λ

�

�

∆t∈SH < 0 (16)

(ii) Higher cognitive precision leads to more per-period impatience over long horizons.

∂ r
∂ λ

�

�

∆t∈LH > 0 (17)

Proof. Note that:

∂ ae

∂ λ
= a∗ − d, (18)

by definition. Hence, the sign of eq. (18) depends on whether it is evaluated over a short
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or long time horizon. We may now differentiate:

∂ r
∂ λ
=

1
∆t
∂ RRR
∂ λ

(19)

= −
1

ae∆t
∂ ae

∂ λ
(20)

Since we trivially have ∆t, ae > 0, the sign of ∂ r/∂ λ is given by eq. (18) and the
definitions (14) and (15), which yields the result.

The following trivial corollary delivers Prediction 1 in the main text:

Corollary 1.1. Subjects with perfect cognitive precision, λ= 1, have less pronounced short
run impatience than those with imperfect cognitive precision, whereas the opposite is true
concerning long run impatience.

Given our measure of per-period impatience, we may show that per-period impa-
tience decreases in the time delay (∆t).

Proposition 1 (Decreasing per-period impatience).

(i) For those with perfect cognitive precision, λ= 1, per-period impatience is constant in
the time delay. Formally,

∂ r
∂∆t

�

�

�

λ=1
= 0 (21)

(ii) For those with imperfect cognitive precision, λ = c + be−k∆t , there exists an interval
[0, T] such that per-period impatience decreases in the time delay.

∂ r
∂∆t

�

�

�

λ<1
< 0 (22)

for ∆t ∈ [0, T] where

T =
1
β

ln

�

�

�

�

1
d

�

1+
β

k

�

�

�

�

�

.

Proof. We will consider the two cases: (i) λ= 1; (ii) λ ∈ [0, 1) separately.
In the case λ= 1 we trivially note that:

r =
− ln |ae|
∆t

= − ln |δ| (23)

Hence, we have that:
∂ r
∂∆t

= 0 (24)

For λ= c + be−k∆t , first note that:
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∂ ae

∂∆t
< 0

when
∆t <

1
β

ln

�

�

�

�

1
d

�

1+
β

k

�

�

�

�

�

(25)

and that
∂ 2ae

∂∆t2
> 0

when

∆t <
1
β

ln

�

1
d
+
β2

k2d
+

2b
kd

�

. (26)

Note that (25) is a tighter bound than (26). Hence, when (25) holds we see that:

∂ RRR
∂∆t

= −
1
ae

∂ ae

∂∆t
> 0 (27)

∂ 2RRR
(∂∆t)2

= −
1
ae

∂ 2ae

∂∆t2
+

1
(ae)2

∂ ae

∂∆t
< 0 (28)

meaning that the RRR is concave in∆t. The following expression describes how the
RRR per unit of time changes in the time delay:

∂ r
∂∆t

=
∂ RRR
∂∆t ∆t − RRR

∆t2 (29)

A sufficient condition for (29) to have negative sign is therefore:

∆t ·
∂ RRR
∂∆t

< RRR (30)

We may now define the function:

g := RRR−
∂ RRR
∂∆t

∆t (31)

and differentiate to find:
∂ g
∂∆t

= −
∂ 2RRR
(∂∆t)2

∆t ≥ 0 (32)

We note that at ∆t = 0 we have:

g(0) = RRR(0) = − ln |λ+ (1−λ)d|> 0 (33)

since 0< d,λ < 1. Hence, we find that g is positive for all ∆t > 0:

g > 0
�

�∆t > 0 (34)
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substituting in the definition of g shows that (30) is satisfied yielding the result.

The following corollary underlies Prediction 2 in the main text:

Corollary 1.1. The magnitude of per-period impatience’s decrease in the time delay is
smaller for those with perfect cognitive precision than for those with imperfect cognitive
precision. Locally, this provides:

∂ 2r
∂ λ∂∆t

�

�

�

λ=1
> 0 (35)

Proof. Note that the previous proposition provides that ∂ r/∂∆t < 0 for λ < 1 and is
equal to zero for λ= 1. The result follows.

It is important to note that the above theorems make no assumptions concerning the
start time t1 or end time t2; but rather, only depend on the time delay∆t = t2− t1. This
is in line with our Predictions 1 and 2, which cover both delays starting in the present
and in the future.

Next, we turn to the phenomenon of subadditivity. Subadditivity arises purely as a
result of cognitive noise – as is well-known, β −δ preferences do not generate subaddi-
tivity.

Theorem 2 (Subadditivity). Those subjects reporting cognitive uncertainty and an interior
default will exhibit subadditivity in their choices. For λ= e−k∆t , c; d ∈ (0, 1) we claim:

SA := (RRRt0,t0+t + RRRt0+t,t0+2t)− RRRt0,t0+2t > 0 (36)

Since RRR only depends on the time difference and not the start time this is equiva-
lent to considering

SA := (RRR0,t + RRRt,2t)− RRR0,2t > 0.

Taking ae as a function of the time delay, our subadditivity condition can be rewritten
as:

ae(2t)> ae(t)ae(t) (37)

Proof. By algebraic manipulations the existence of subadditivity is equivalent to:

f (t) := (1− e−2kt)d − (1− e−kt)2d2 − 2e−kt(1− e−kt)δt d > 0. (38)

The subadditivity condition is reduced to f (t) > 0 for t > 0. We first compute that
f (0) = 0. Accordingly, to prove that f (t) > 0 for positive values of t it will suffice to
show that f ′(t)> 0. Taking the derivative yields:

f ′(t) = 2ke−2kt d(1−δt) + 2ke−kt(1− e−kt)d
�

δt + d − ln |δ|δt
�

. (39)
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Since δ < 1 we see that the above expression is positive thereby proving the claim.
For constant λ ∈ (0, 1), algebraic manipulations reduce subadditivity to

g(d) := λ(δ2t − 2dδt) + d(1− (1−λ)d)> 0. (40)

Subadditivity is equivalent to g > 0
�

�d ∈ (0,1). We now prove this claim.
Since g is quadratic in d with negative second derivative its unique minima on an

interval will be found on the boundary points of the interval, them being, d ∈ {0, 1}. We
note that g(0) is trivially positive. Moving on to the next point we compute

g(1) = λ(1+δ2t − 2δt) (41)

If we view g(1) as function of t, with, h(t) := g(1), then we may note that:

h(0) = 0 (42)
dh
d t
= 2λ ln |δ|(δ2t −δt)≥ 0 (43)

Consequently, g(1)≥ 0 and may conclude that g > 0 for d ∈ (0,1).

The following corollary delivers Prediction 3 in the main text.

Corollary 2.1. The magnitude of subadditive behavior is greater for those with lower cog-
nitive precision than for those who are certain (λ= 1).

Proof. For those who are certain, we have that SA = 0, whereas for those that exhibit
any uncertainty we have SA> 0.

Theorem 3. There are no front-end delay effects.

Note that the non-existence of front-end delay effects in the absence of cognitive
noise is driven by our assumption of exponential discounting. Present bias would deliver
front-end delay effects in the absence of cognitive noise.

Proof. As mentioned earlier, with exponential discounting, RRR is a function of the time
delay, ∆t, not the individual start and end times. This precludes the existence of front-
end delay effects. Formally, for any l > 0,

∆F E := RRR0,t2
− RRRl,t2+l = ln

�

λu−1 (δt2) + (1−λ)d
λu−1 (δt2) + (1−λ)d

�

= 0. (44)
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The following corollary underlies Prediction 4 in the main text:

Corollary 3.1. An increase in cognitive precision doesn’t affect front-end delay effects.

B Additional Figures

Figure 7: Screenshot of an example decision screen in Money Main

Figure 8: Screenshot of an example cognitive uncertainty elicitation screen in Money Main
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Figure 9: Histogram of cognitive uncertainty statements in Money Main (left panel, N = 7, 740) and
Voucher Main (right panel, N = 6, 000).
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Figure 10: Link between cognitive uncertainty and across-task variability in normalized switch points in
an exact repetition of the same decision problem inMoney Main (left panel, N = 1,290) and Voucher Main
(right panel, N = 1,000). The y-axis captures the absolute difference between the normalized indifference
points across the two implementations. Average cognitive uncertainty is winsorized at 60 (roughly the
95th percentile in both datasets) for ease of visibility.
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Figure 11: Observed discounting with t1 > 0 in Money Main (top panel, N = 2792) and Voucher Main,
N = 2154 (bottom panel). The figure shows averages across decisions. Whiskers show standard error
bars, computed based on clustering at the subject level.
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Table 7: Cognitive uncertainty and impatience over one week

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive uncertainty -0.66∗∗∗ -0.65∗∗∗ -0.58∗∗∗ -0.55∗∗∗ -0.66∗∗∗ -0.65∗∗∗ -0.61∗∗∗ -0.64∗∗∗
(0.10) (0.11) (0.11) (0.10) (0.13) (0.13) (0.16) (0.14)

Payment amount FE No Yes No Yes No Yes No Yes

Round FE No Yes No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes No Yes

Observations 350 350 218 218 404 404 152 152
R2 0.20 0.23 0.20 0.30 0.15 0.18 0.21 0.34

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The sample
includes decisions in which the time delay is given by one week. Columns (1)–(2) and (5)–(6) include
those trials in which the early payment date is today, and columns (3)–(4) and (7)–(8) those in which the
early payment date is in the future. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Cognitive uncertainty and insensitivity to time delays: Including participant fixed effects

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Time delay (years) -6.99∗∗∗ -6.96∗∗∗ -6.77∗∗∗ -6.81∗∗∗ -33.9∗∗∗ -34.0∗∗∗ -30.7∗∗∗ -30.9∗∗∗
(0.36) (0.36) (0.40) (0.39) (1.99) (1.96) (3.88) (3.89)

Time delay × Cognitive uncertainty 0.055∗∗∗ 0.055∗∗∗ 0.044∗∗∗ 0.045∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.30∗ 0.30∗
(0.01) (0.01) (0.01) (0.01) (0.07) (0.07) (0.16) (0.16)

Cognitive uncertainty -0.26∗∗∗ -0.26∗∗∗ -0.28∗∗∗ -0.28∗∗∗ -0.30∗∗∗ -0.30∗∗∗ -0.42∗∗∗ -0.41∗∗∗
(0.04) (0.04) (0.05) (0.05) (0.06) (0.06) (0.09) (0.08)

Payment amount FE No Yes No Yes No Yes No Yes

Round FE No Yes No Yes No Yes No Yes

Participant FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 4948 4948 2792 2792 3846 3846 2154 2154
R2 0.66 0.66 0.68 0.69 0.73 0.74 0.71 0.71

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Columns (1)–(4) include
data from Money Main, where columns (1)–(2) restrict attention to decision problems with t1 = 0 and columns (3)–(4)
to problems with t1 > 0. An analogous logic applies to columns (5)–(8) for Voucher Main. Demographic controls include
age, gender and income bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Complexity and load manipulations

Dependent variable:
Normalized indifference point

Sample: t1= 0 t1> 0

(1) (2) (3) (4) (5) (6)

Time delay (years) -4.97∗∗∗ -4.94∗∗∗ -4.89∗∗∗ -4.84∗∗∗ -4.84∗∗∗ -4.85∗∗∗
(0.55) (0.54) (0.55) (0.62) (0.62) (0.62)

1 if Complex Dates 3.17 1.38
(3.00) (2.94)

Time delay × 1 if Complex Dates 2.97∗∗∗ 3.36∗∗∗
(0.79) (0.88)

1 if Complex Amounts 0.86 -2.63
(2.91) (3.00)

Time delay × 1 if Complex Amounts 2.07∗∗∗ 2.43∗∗∗
(0.75) (0.84)

1 if Load -2.34 -2.68
(3.04) (3.04)

Time delay × 1 if Load 1.64∗∗ 2.00∗∗
(0.78) (0.82)

Payment amount FE Yes Yes Yes Yes Yes Yes

Demographic controls Yes Yes Yes Yes Yes Yes

Observations 2381 2405 2428 1339 1363 1352
R2 0.08 0.08 0.10 0.07 0.06 0.07

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
Columns (1)–(6) include data from Money Main Replication, Money Complex Dates, Money Complex
Amounts and Money Load. Columns (1)–(3) restrict attention to decision problems with t1 = 0 and
columns (4)–(6) to problems with t1 > 0. Demographic controls include age, gender and income
bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Distribution of participant-level estimates of model parameters

Money Main (MPL & Direct Elicitation)

(1) (2) (3) (4)

β −δ
δ β −δ δ− CU −CU

Median Median Median Median
(25 / 75 pctl.) (25 / 75 pctl.) (25 / 75 pctl.) (25 / 75 pctl.)

δ̂ 0.96 0.97 0.97 0.97
(0.90 / 0.99) (0.92 / 0.99) (0.91 / 0.99) (0.92 / 0.99)

β̂ 0.88 0.96
(0.66 / 0.99) (0.74 / 1.00)

d̂ 0.51 0.51
(0.27 / 0.73) (0.25 / 0.73 )

Notes. Distribution of estimates of different versions of eq. (9) estimated
at the subject level. MPL = multiple price list. Each column corresponds
to a separate model specification. Column (1): set β = 1 and pCU =
0. Column (2): set pCU = 0. Column (3): set β = 1. All estimations
accommodate utility curvature: a representative-agent CRRA parameter
of γ̂= 0.94was separately estimated on the risky choice data and used in
the participant-level estimations on the intertemporal choice data. The
exponential parameter δ is the monthly discount factor.

D Direct Elicitation Experiments

As part of ourMoney Main experiments, each subject completed six additional intertem-
poral choice problems that were administered in a direct elicitation format rather than
using MPLs. That is, in each of these decisions, subjects were directly asked which mon-
etary amount to be received in t = t1 is worth as much to them as receiving $y2 in
t = t2, see Figure 12 for an example screenshot.31 After participants had indicated their
indifference amount, the next screen again elicited cognitive uncertainty, see Figure 13.

We here replicate all of our main analyses using these direct elicitation data.
Second, Table 12 documents that cognitive uncertainty is strongly and significantly

correlated with impatience over a horizon of one week. Third, columns (1)–(2) of Ta-
ble 13 document that cognitive uncertainty is highly predictive of a reduced sensitivity
of intertemporal choice behavior with respect to variation in the time delay, as we can
infer from the significant interaction term. Columns (3)–(4) show the same patterns by
documenting that cognitive uncertainty is strongly predictive of decreasing impatience
as the time delay increases, as we can again infer from the significant interaction term.

Next, Table 14 documents that subadditivity effects strongly increase in cognitive

31The only difference between the choice problems in the direct elicitation experiments and the MPL
is that (to save time) we only elicited direct elicitation problems in which the early payment date was
today.
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Figure 12: Screenshot of an example decision screen in the direct elicitation part of Money Main

uncertainty, see columns (2)–(3), (5)–(6) and (8)–(9). Indeed, as we can see from the
usually insignificant raw term “1 if long interval”, there is no significant evidence for
subadditivity among subjects who indicate cognitive uncertainty of zero.

Finally, Table 15 replicates the result that cognitive uncertainty is uncorrelated with
front-end delay effects. This again highlights that “not anything goes” but that cognitive
uncertainty is only predictive of a specific set of empirical regularities as pre-registered.

Figure 13: Screenshot of an example cognitive uncertainty elicitation screen in the direct elicitation part
of Money Main
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Table 12: Cognitive uncertainty and impatience over one week: Direct elicitation

Dependent variable:
Normalized indifference point

(1) (2) (3)

Cognitive uncertainty -0.59∗∗∗ -0.59∗∗∗ -0.57∗∗∗
(0.10) (0.11) (0.11)

Payment amount FE No Yes Yes

Demographic controls No No Yes

Observations 327 327 327
R2 0.13 0.17 0.17

Notes. OLS estimates, robust standard errors (in paren-
theses) are clustered at the subject level. The sample in-
cludes decisions in which the time delay is given by one
week. All observations are from the direct elicitation ex-
periments. In these experiments, the early payment date
is always today. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 13: Cognitive uncertainty and diminishing impatience: Direct elicitation

Dependent variable:
Normalized indifference point Implied per-period patience δ_H

(1) (2) (3) (4)

Time delay (years) -7.16∗∗∗ -7.08∗∗∗ 0.043∗∗∗ 0.044∗∗∗
(0.49) (0.48) (0.00) (0.00)

Time delay × Cognitive uncertainty 0.091∗∗∗ 0.084∗∗∗ 0.0011∗∗∗ 0.0011∗∗∗
(0.02) (0.01) (0.00) (0.00)

Cognitive uncertainty -0.43∗∗∗ -0.40∗∗∗ -0.0050∗∗∗ -0.0047∗∗∗
(0.05) (0.05) (0.00) (0.00)

Payment amount FE No Yes No Yes

Demographic controls No Yes No Yes

Observations 3870 3870 3870 3870
R2 0.17 0.19 0.17 0.19

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. All obser-
vations are from the direct elicitation experiments. In these experiments, the early payment date is always
today. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 14: Cognitive uncertainty and subadditivity: Direct elicitation

Dependent variable:
Composite indifference point

Sample: Full Set 1 Set 2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 if one long interval 7.45∗∗∗ 3.81∗∗∗ 3.93∗∗∗ 7.05∗∗∗ 3.72∗ 3.72∗ 7.86∗∗∗ 3.66∗ 3.77∗
(0.70) (1.40) (1.41) (1.05) (1.94) (1.94) (0.93) (2.02) (2.04)

1 if one long interval × Cognitive uncertainty 0.20∗∗∗ 0.19∗∗∗ 0.18∗∗ 0.18∗∗ 0.23∗∗∗ 0.22∗∗
(0.06) (0.06) (0.08) (0.08) (0.09) (0.09)

Cognitive uncertainty -0.47∗∗∗ -0.47∗∗∗ -0.53∗∗∗ -0.53∗∗∗ -0.41∗∗∗ -0.39∗∗∗
(0.07) (0.07) (0.10) (0.10) (0.10) (0.11)

Set FE Yes Yes Yes No No No No No No

Payment amount FE No No Yes No No Yes No No Yes

Observations 1290 1290 1290 654 654 654 636 636 636
R2 0.02 0.06 0.07 0.01 0.08 0.10 0.02 0.05 0.07

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. All observations are from the direct
elicitation experiments. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 15: Cognitive uncertainty and front-end delay effects: Direct elicitation

Dependent variable:
Normalized indifference point

(1) (2) (3) (4)

1 if front end delay 5.54∗∗∗ 5.28∗∗∗ 5.26∗∗∗ 5.27∗∗∗
(0.69) (1.32) (1.32) (1.31)

Front-end delay × Cognitive uncertainty 0.060 0.061 0.056
(0.06) (0.06) (0.06)

Cognitive uncertainty -0.35∗∗∗ -0.35∗∗∗ -0.32∗∗∗
(0.06) (0.06) (0.06)

Set FE Yes Yes Yes Yes

Payment amount FE No No Yes Yes

Demographic controls No No No Yes

Observations 1290 1290 1290 1290
R2 0.01 0.06 0.07 0.10

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the
subject level. All observations are from the direct elicitation experiments. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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E Experimental Instructions

E.1 Money Main

61



62



63



E.2 Voucher Main
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