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Abstract

We develop interpretable, quantitative indices of the objective and subjective
complexity of lottery choice problems that can be computed for any standard dataset.
These indices capture the predicted error rate in identifying the lottery with the
highest expected value. The most important complexity feature is the state-by-state
dissimilarity of the lotteries in the set (“tradeoff complexity”). Using our complexity
indices, we study behavioral responses to complexity out-of-sample across one mil-
lion decisions in 11,000 unique binary choice problems. Complexity predicts strong
attenuation of decisions to problem fundamentals. This can generate systematic bi-
ases in revealed preference measures such as spurious risk aversion. These effects
are very large, to the degree that complexity explains a larger fraction of estimated
choice errors than proximity to indifference. Accounting for complexity-driven at-
tenuation in structural estimations improves model fit substantially. Complexity
aversion explains a smaller fraction of the data.
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1 Introduction

Much recent research in both the lab and the field emphasizes that decision problems
involving risk are often complex, meaning that they require a non-trivial degree of cogni-
tive information processing to aggregate problem fundamentals into an expected-utility-
maximizing decision. Understanding complexity is believed to be important because it is
intuitively pervasive in real life, and may thus be a primitive that drives choice anomalies
across multiple domains. Yet this also begs the question: which risky choice problems
actually are complex, and how does complexity affect decisions? The typical approach
in the literature is to proceed on a heuristic case-by-case basis: the researcher intuits
a specific complexity feature and investigates how it affects behavior. Yet, ideally, one
would like to quantify the overall complexity of a choice set, and to study behavioral
responses to such a composite notion of complexity.
In this paper, we make progress by developing an empirical mapping from choice

set features to indices of choice complexity, which can be computed for any standard
dataset. We use these indices to study behavioral responses to complexity and docu-
ment that complexity-driven behavioral attenuation – an insensitivity of decisions to
fundamentals – is quantitatively even more important in explaining choice than popu-
lar behavioral models such as prospect theory.

Development of indices of lottery choice complexity. We understand the complexity
of a choice problem as the amount of information processing required to identify one’s
preferred choice option. This informal definition is broader than notions of complexity
that exclusively focus on the “cardinality” or “dimensionality” of a problem.
Complexity is latent and unobserved. We, hence, develop a revealed measure of

complexity that is based on errors (mistakes). In choice data, mistakes are generally
unobserved: the researcher does not know the decision-maker’s utility function and, as
a result, cannot distinguish errors from preferences. To circumvent this problem, we
propose to quantify the objective complexity of a lottery choice set as the predicted error
rate in identifying the lottery with the highest expected value, where the prediction is
computed as a function of choice set features.
This index does not rest on the assumption that people are necessarily risk neutral.

We also don’t assume that maximizing expected value (EV) is as complex as maximizing
expected utility. Rather, the thought is that those choice set features that make it harder
to gauge EV also make it harder to gauge expected utility (or other subjective values)
because the cognitive process of aggregating probabilities and payouts is similar across
the two tasks. Based on this idea, we formally state an identifying assumption for the
true complexity of standard lottery choice problems to be a monotone function of our
complexity index.
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Quantifying complexity based on an EV task has two advantages. First, relative to
revealed-preferences measures such as random choice, it does not impose a specific be-
havioral model of the nature of people’s mistakes. For instance, the EV task captures
mistakes that result from both noise and stable heuristics. Second, relative to subjective
difficulty measures, it does not require awareness of mistakes and is incentivized.
To train our index, we implement experimental problems in which subjects’ payout

only depends on the EV of the lottery they select. Because ex ante we do not know
which choice set features drive complexity, we design a large-scale experiment in which
subjects make decisions involving 2,220 quasi-randomly generated problems.
In selecting the features that enter our objective complexity index (OCI), we balance

the tradeoff between completeness and interpretability that is inherent to any predictive
index. We implement exploratory LASSO regressions to identify the most predictive fea-
tures, and then construct a handcrafted index using a sparse set of easily interpretable
features that closely approximates the performance of machine learning algorithms.

OCI comprises two classes of features: (i) the proximity of the EVs of the lotteries in
the set; and (ii) features that capture the difficulty of aggregating (and trading off) the
constituent components of the problem. In this latter class, the most important feature
by far is what we call the excess dissimilarity of the lotteries in a set, by which we mean
the degree to which the cumulative distribution functions of two lotteries are dissimilar
from each other above and beyond their difference in expected value. This measure can
intuitively be understood as capturing the strength of tradeoffs across different payout
states (“tradeoff complexity”) – problems are easier when they involve less pronounced
tradeoffs across states. At the extreme, lotteries with a first-order stochastic dominance
relationship have excess dissimilarity of zero because they do not involve any tradeoffs.
Excess dissimilarity thus fundamentally captures a comparative evaluation process.
In binary choice sets that comprise a safe option, excess dissimilarity essentially cap-

tures the variance of the risky option. This implies that – if one option is safe – variance
produces complexity.
In addition to the objective complexity of choice problems, we also quantify subjective

complexity. To do this, we elicit subjects’ cognitive uncertainty (CU) in the EV task and
use this data to develop a subjective problem complexity index (SCI). In principle, OCI
and SCI capture distinct concepts, but in practice they are very similar.

Evidence for construct validity. To provide evidence for our identifying assumption
that there is a tight link between the EV task and choice problems, we implement stan-
dard binary lottery choice experiments and elicit subjects’ CU about their choices (Enke
and Graeber, 2023). Both OCI and SCI are strongly predictive of variation in CU across
choice problems, which we view as encouraging evidence for the validity of our indices.
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These correlations hold in both across- and within-subjects designs. Moreover, the effect
of individual choice set features on CU is very similar in lottery choice and the EV task,
which again suggests a tight link between the cognitive difficulty of the two problem
types.

Behavioral responses I: Choice set complexity. With our complexity indices in hand,
we study behavioral responses to complexity out-of-sample in traditional binary lottery
choice problems. We both collect our own dataset and re-analyze the most comprehen-
sive dataset on binary lottery choice ever collected (Peterson et al., 2021). In total, we
evaluate one million decisions across 11,000 unique choice problems.
We find that the most important complexity response by far is behavioral attenuation:

an insensitivity of choice to problem fundamentals. Unlike attenuation bias in economet-
rics, attenuation in choice is not mechanically driven by mismeasured variables. Rather,
it reflects noisy or heuristic decision-making processes. This attenuation effect is large:
the elasticity of choice to the difference in EVs of the two lotteries (or the difference
in estimated prospect-theory values) decreases by about 75% going from low to high
complexity.
Behavioral attenuation could reflect either that complexity produces choice noise or

that it leads to an increased reliance on stable heuristics. To investigate this, we link
problem complexity to rich data on the frequency of within-subject choice inconsisten-
cies in repeated elicitations of the same problem. We find that excess dissimilarity is
strongly correlated with this proxy for choice noise (r ≈ 0.57). In contrast, the num-
ber of distinct payout states is uncorrelated with across-trial variability (as in Arrieta
and Nielsen, 2023). This tentatively suggests that different types of complexity trigger
different simplification strategies.
We benchmark the magnitude of complexity effects against the proximity to indif-

ference of the lotteries in the set. We find that OCI explains an order of a magnitude
more of the across-problem variation in proxies for choice errors (such as choice incon-
sistency) than the estimated proximity to indifference in a prospect theory model.

Behavioral responses II: Lottery complexity. How do people respond to the complex-
ity of individual lotteries? Ex ante, there are two plausible possibilities: stronger atten-
uation and systematically disliking complex options (complexity aversion). We find evi-
dence for the importance of both. First, like previous work, we find pronounced complex-
ity aversion to compound lotteries (e.g., Halevy, 2007; Gillen et al., 2019). The number
of payout states, on the other hand, is largely uncorrelated with choice, reminiscent of
the mixed evidence in the literature summarized by Wakker (2022).
Second, we find pronounced evidence for complexity-driven behavioral attenuation

with respect to lottery variance. We document how such attenuation can produce system-
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atic biases in revealed preference measures, such as spurious small-stakes risk aversion
or risk love. Intuitively, because higher variance makes choice noisier, it pushes choice
rates towards 50%, which can generate either spurious risk aversion (if the lottery is
very attractive) or spurious risk love (if the lottery is unattractive). As a result, as in
other recent work, complexity-driven attenuation (or noise) does not “cancel out” but
produces systematic bias (e.g., Andersson et al., 2016; Gillen et al., 2019; McGranaghan
et al., 2022). These effects of complexity are so strong that they can entirely override
any true risk aversion that likely exists.

Structural estimations. To further assess the quantitative importance of complexity
effects, we conduct structural estimations that allow for complexity aversion and / or
complexity-dependent attenuation. To study complexity-driven attenuation, we allow
the responsiveness parameter in a logit model to be a function of complexity, which
amounts to introducing one additional parameter. This generates an increase in model
fit of 19%. In our dataset, this increase is even slightly larger than the combined in-
crease resulting from all of prospect theory (reference dependence, value function cur-
vature, loss aversion and probability weighting). Intuitively, the reason why models that
ignore complexity exhibit considerably lower performance is that they dramatically un-
derpredict the probability that people choose the (estimated) higher value option when
complexity is low, but strongly overpredict it when complexity is high.
On the other hand, allowing for complexity aversion increases model fit by 3%.

Contribution and relation to prior work. We view this paper as making two main
contributions. First, we develop the first comprehensive indices of the objective and sub-
jective complexity of lottery choice problems. These indices are transparent and defined
on objective choice set features, making them amenable to be computed in a standard-
ized fashion across datasets. We make available code that automates this process. Part of
this contribution is also to identify excess dissimilarity as the most important complexity
feature. In Section 7, we discuss potential applications of the complexity indices.
Our second contribution is to study behavioral responses to complexity in a dataset

that is orders of magnitude larger and more comprehensive than typical experimen-
tal datasets. We find some evidence for complexity aversion, and strong evidence for
complexity-driven behavioral attenuation. Our results are related to other recent contri-
butions that have documented links between an insensitivity of decisions and complexity,
noise and / or cognitive uncertainty (Enke and Graeber, 2023; Enke et al., 2023, 2024;
Oprea, 2022; Frydman and Jin, 2021, 2023; Vieider, 2021, 2022). Here, we offer an
index that predicts the magnitude of attenuation across problems based on objective
problem features.
A small number of theoretical contributions have proposed that lottery complexity de-
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pends on problem features such as entropy (Verstyuk, 2016; Mononen, 2021; Hu, 2023)
or support (Puri, 2022; Gabaix and Graeber, 2023).1 Our complexity metrics differ sub-
stantially from theirs, both because we construct composite measures and because our
indices include excess dissimilarity as a main feature. Shubatt and Yang (2024) formal-
ize the effects of dissimilarity on choice.
Section 2 lays out a conceptual framework. Section 3 describes the data we rely on

and Section 4 develops the complexity indices. Section 5 discusses behavioral responses
to complexity and Section 6 presents structural estimations. Section 7 concludes.

2 Conceptual Framework

2.1 Terminology, Approach and Identifying Assumption

Consider choice sets comprising two lotteries, A and B, and denote by dc ∈ {A, B} the
decision maker’s (DM’s) choice. We denote by EU(x) the DM’s true expected utility from
a lottery, where we allow utility to include any form of non-standard preferences. We
are interested in quantifying the complexity of choosing between A and B.
Economists are yet to converge on a common definition of the term “complexity.”

Following recent work (e.g., Oprea, 2020, 2022; Enke and Graeber, 2023; Enke et al.,
2023, 2024), we take an information-processing-based perspective. We understand a
choice problem as more complex if the cognitive information processing that is required
to identify one’s preferred option is more difficult.
This definition is broader than those definitions that focus exclusively on the “size”

or “cardinality” of the problem, as in approaches that operationalize complexity as a
function of lottery support (e.g., Sonsino et al., 2002; Iyengar and Kamenica, 2010; Puri,
2022; Arrieta and Nielsen, 2023). Choice problems can vary in their cognitive difficulty
even holding fixed its cardinality. For instance, a choice between two lotteries is often
easier when a first-order stochastic dominance relationship exists.

Approach. Rather than exogenously impose what counts as complex, we wish to mea-
sure which choice set features contribute to complexity. Because latent complexity (re-
quired information processing) is fundamentally unobservable, we define the objective

1Appendix Table 4 provides an overview of the experimental literature on complexity in lottery choice.
This literature has shown that different lottery features can produce either aversion, or the adoption of
stable rules, or higher noisiness. Our comprehensive approach that relies on multiple complexity features
allows us to highlight that there is no such thing as a “single complexity response”. This said, we do find
that behavioral attenuation is quantitatively by far the most important complexity effect.
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complexity (OC) of a choice problem as the probability that the DM makes a mistake.

OCA,B = P(dc /∈ ar gmax
x∈{A,B}

EU(x)) (1)

Because the researcher usually does not know the DM’s objective function, this object
still cannot be directly observed. To overcome this problem, we consider a second, ancil-
lary decision problem in which the DM is tasked with identifying which lottery has the
highest EV. We denote the decision by ds. In this deterministic task, the objective func-
tion is known, thus we can directly observe deterministic objective complexity (DOC).

DOCA,B = P(ds /∈ ar gmax
x∈{A,B}

EV (x)) (2)

This complexity metric has two features. First, it imposes no assumptions on the nature
of the mistakes. Research in economics and psychology has emphasized at least two
structurally different types of mistakes: those resulting from noisy evaluations and those
that result from stable heuristics. As summarized in Appendix Table 4, multiple lottery
choice experiments have shown that higher complexity can produce either the adoption
of stable rules or higher noise. Because DOC is only defined on errors, we capture both
of these literatures. For example, a more pronounced tendency to follow a stable rule
such as “select lottery with highest minimum payout (max-min)” would generate more
errors in the EV task. The fact that the EV task does not impose a specific behavioral
model of a complexity response is an attractive feature relative to alternative conceivable
approaches. For example, defining complexity based on observed choice inconsistencies
would impose the assumption that complexity only triggers noise.
A second feature of the EV task is that, unlike subjective measures of the difficulty of

choice (e.g., Enke and Graeber, 2023), it is objective and can be financially incentivized.

Identifying assumption. A main idea behind this paper is that choice errors arise in
large part due to the latent difficulty of aggregating probabilities and payouts into a
decision. Complexity arising from aggregation similarly arises in lottery choice and EV
problems because the aggregated value of a lottery is not transparent to real decision
makers (e.g., Oprea, 2022). Our main identifying assumption is that the frequency of
errors in the EV task is predictive of errors in the choice task,

OCA,B = f (DOCA,B) , (3)

with f (·) a monotone increasing function. This identification assumption does not re-
quire that people are necessarily risk neutral. It also doesn’t require that maximizing EV
is as difficult as maximizing expected utility. Instead, our assumption is that those choice
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set features that make it more difficult to gauge EV also make it more difficult to gauge
expected utility, producing a link between error rates in the two different problems.
As a result, our identifying assumption is a statement about how the relative diffi-

culty of different choice problems is correlated with the relative difficulty of different EV
problems, rather than about how the absolute difficulty of a choice problem compares
to the absolute difficulty of the analogous EV problem. In particular, our identifying as-
sumption is consistent with situations in which (i) choosing from the set C1 = {A, B}
is hard and (ii) determining the highest EV option in C1 is easy, as long as, for the set
C2 = {D, E}, a higher difficulty of choosing in C2 compard to C1 goes hand-in-hand with
a higher difficulty of identifying the highest EV option in C2 compared to C1.2

2.2 Empirical Implementation

Because it is impractical for researchers to always implement an analogous EV problem
to quantify the complexity of their choice problem of interest, we leverage the idea
that error rates in the EV problem can be predicted based on choice set features. This is
attractive because once complexity is defined based on objective features of the set, it
can be easily computed for any standard dataset.
Denote by f A,B an (N+1)-dimensional vector of choice set features, where the zeroth

element is a constant. Denote by εA,B a mean-zero disturbance term.

Definition 1. The objective complexity index for choice set {C,D} is given by

OC IC ,D :=
N
∑

i=0

β̂i f C ,D
i + γ̂ ln(1+ |EV (C)− EV (D)|) , (4)

where the vector β̂ and γ̂ are estimated in a sample of EV problems using OLS:

DOCA,B =
N
∑

i=0

βi f
A,B

i + γ ln(1+ |EV (A)− EV (B)|) + εA,B . (5)

This index has a simple interpretation once it is applied to standard lottery choice
problems: it captures the error rate in the analogous EV problem that is predicted by the
choice set features. We allow the absolute EV difference to enter non-linearly because in
random choice models such as logit, mistake rates are a concave function of the absolute
EV difference.
2To illustrate, consider choice set C1, deciding between (A) $7 for sure and (B) a 50-50 lottery that

pays $20 or $0. This choice problem is difficult for many people (e.g., Agranov and Ortoleva, 2017) even
though the analogous EV problem is arguably easy. Yet now consider choice set C2, comprising (D) $15
for sure and (E) a 90-10 lottery that pays $20 or $0. As long as C1 is more difficult than C2 in terms of
both choice and identifying the higher EV option, it is immaterial from our perspective that C1 appears
easy in the EV task and difficult in the choice task. In Section 4, we will see that this is indeed the case.
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OCI comprises both features that capture the proximity of the aggregated (expected)
values, and features that capture the complexity of aggregating payouts and probabil-
ities conditional on the EV difference. OCI does not allow the effect of the features fi

to depend on the EV distance. This is clearly a simplification. We expect our index to
perform well in problems for which the DM is neither extremely close nor very far from
indifference. Below in Section 6.1, we develop an alternative index of problem complex-
ity that is independent of the proximity of the aggregated values but requires stronger
structural assumptions on the decision errors.
All of the above concerns the quantification of objective choice complexity. Yet in

many economically-relevant situations, it is subjective complexity that matters for be-
havior. We define a subjective complexity index (SC IC ,D) analogously to Definition 1,
except that in equation (5) objective mistake rates are replaced by the subjective prob-
ability of making a mistake in the EV problem.

3 Experimental Datasets

Our main analysis is based on four experimental datasets, three of which we collected
ourselves. Table 1 provides an overview.

3.1 Experiment EV Tasks

Decision task. We present experimental participants with two or more lotteries. In-
stead of asking them to choose the lottery that they personally prefer, we instruct par-
ticipants to indicate the lottery that has the highest EV. Each subject completed 50 deci-
sion problems. This design has been used previously (e.g., Benjamin et al., 2013), albeit
always on a very small set of distinct problems. The task is similar in spirit to the “deter-
ministic mirrors” proposed by Oprea (2022) and Martínez-Marquina et al. (2019).
We avoid jargon and never speak of “expected value.” Rather, we instruct participants

to select the lottery that has the highest average payout if each lottery is run many, many
times (100,000 times). We explain that, in each run, we record the payout of the lottery
and then compute the average payout across runs. Subjects’ potential bonus equals $10
if they select the correct lottery, and nothing otherwise. This incentive scheme has two
main upsides. First, it makes transparent the objective nature of the task. Second, it
holds the incentives constant across problems.
We believe the cognitive difficulty of lottery choice problems mainly comes from the

difficulty of aggregation: whether deliberately or not, people ought to somehow combine
the probabilities and payouts of different states to reach a decision. An attractive feature
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Table 1: Overview of experiments and data sources

Experiment Description Problems Subjects Decisions

EV Indicate lottery with highest EV & 2,100 procedurally generated & 1,148 57kTasks CU elicitation 120 targeted

Choice Tasks Lottery choice problems 10,398 procedurally generated 15,151 973kfrom PEA

Choice Lottery choice problems & 500 procedurally generated 250 12.5kTasks CU elicitation

Within EV and lottery choice problems & 240 procedurally generated 300 12kSubject CU elicitation

Notes. PEA = Peterson et al. (2021). CU = Cognitive uncertainty.

of our design is that this aspect of the decision problem is similar between our EV Task
and real lottery choice problems.3
A potential concern with this design is that participants may misunderstand it and,

instead, treat it as a standard choice task. We took the following measures to ensure that
this was not the case. First, we deliberately designed the incentive scheme described
above to make it clear that no lottery was ever actually being played out. We verfied
subjects’ understanding of this using a comprehension check. Second, the question on
subjects’ decision screen reads: “Which lottery has the highest average payout if the com-
puter runs it many, many times?”, rather than “Which lottery do you select?”. Third, our
instructions emphasized that the task has a mathematically correct solution. Fourth, if
it was the case that some subjects had still misunderstood our instructions, we would
expect them to exhibit risk aversion. We find no evidence for this in our data.

Cognitive uncertainty elicitation. On each decision screen, we additionally asked
“How certain are you that each lottery has the highest average payout?”, and subjects
distributed 100 “certainty points” across the lotteries in the choice set to indicate their
probabilistic beliefs. Our instructions clarified that subjects should express how likely
they think it is that each lottery has the highest average payout. This procedure is simi-
lar to the elicitation of cognitive uncertainty (CU) in Enke and Graeber (2023) and Enke
et al. (2023).⁴ Appendix Figure 7 shows a screenshot of a decision screen.

3At the end of the study, we asked subjects whether they had used a calculator or other help. 23% of
subjects indicated they had. We have verified that our complexity indices are very similar if we restrict
attention to the sub-sample of subjects who report not having used external help.
⁴Recent work has cast doubt on the effectiveness of canonical incentive schemes designed to elicit

beliefs (Danz et al., 2022). To account for this, we incentivize CU in two different ways. In 15% of the
sample, we deployed a binarized scoring rule with a prize of $10 and a winning probability of q =
1− (1− g)2, where g is the probability assigned to the correct option. In 85% of the sample, we instead
paid subjects $0.10 for each point they allocated to the correct lottery. This scoring rule is not proper but
simple to understand. The distributions of CU in these two sub-samples are very similar.
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Generation of problems. We desire our complexity indices to be applicable across dif-
ferent datasets. It is, hence, crucial for us to develop them on a dataset that includes as
many commonly-encountered lottery features as possible. We designed the experiment
EV Tasks to comprise a total of 2,220 unique choice sets. A first set of 2,100 unique
choice problems was generated using a quasi-random procedure, meaning that the lot-
teries are random conditional on a set of parameters that we impose to (i) make the
problems non-trivial and (ii) ensure variation across a large set of features. This random
procedure is called for because we as researchers do not know ex ante which features
matter most for complexity, and because we do not want our own intuitions to constrain
the development of the indices.
The remaining choice problems were devised by following the typical approach in

lab experiments of designing a relatively small number of problems that are targeted
at identifying some specific effect of interest. Our main analyses will leverage all 2,220
choice problems in the dataset. In Appendix G, we report separate analyses that only
make use of the smaller, targeted set.
We focus on two-item menus and discuss an extension to larger menus in Section 7.

95% of all tasks involve only two lotteries. In the two-item menus, 30% involve decid-
ing between a two-state lottery and a safe payment. In the remaining 70% of problems,
both lotteries are non-degenerate, and the number of states of both lotteries varies be-
tween two and seven. We collected data until each problem was completed by at least
20 subjects (median is 22 and average 26).

Summary statistics. The average problem-level error rate in the EV Tasks experiment
is 27%, with amedian of 25% and IQR= [14%, 38%]. The average problem-level subjec-
tive error rate (average CU) is 18%, with a median of 17% and IQR= [13%,22%]. The
correlation between problem-level error rates and average CU is r = 0.49 (p < 0.01),
suggesting subjects’ beliefs are reasonably well-calibrated, on average. In 7.9% of two-
item menus does a majority select the wrong option, yet this difference is statistically
significant in only 1.4% of problems. Appendix Table 8 presents further summary statis-
tics.

3.2 Lottery Choice Problems

Dataset of Peterson et al. (2021). Peterson et al. collected by far the largest and most
comprehensive binary lottery choice dataset in the literature. The authors used a quasi-
random procedure to generate the 10,398 unique binary choice problems that we use.⁵
15,151 Amazon Mechanical Turk (AMT) workers completed an average of 13 problems

⁵We drop problems that involve ambiguity or that involve two safe payments. We combine identical
problems with / without feedback.
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five times each, for an average total of 65 decisions per subject. The dataset was de-
signed to span a much larger space of choice problems than previous data-collection
exercises, making the data well-suited for our purposes. Appendix Table 8 presents sum-
mary statistics.
While the richness and size of this dataset provide many advantages, it has the down-

side that Peterson et al. (2021) did not pay out losses and instead truncated all payouts
from below at zero. While this is a shortcoming, we view it as ultimately inconsequen-
tial: (i) the results shown below are robust to restricting attention to choice problems
that only involve gains and (ii) the results are very similar in our own incentivized ex-
periments described next. Appendix C.3 replicates our main results excluding choice
problems from PEA that involve losses.

Experiment Choice Tasks. As a robustness check, we implemented our own lottery
choice experiments. We generated 500 choice problems using a similar automated quasi-
random procedure as in the EV Tasks experiment, except that we only implemented
binary choice sets. Losses were incentivized and deducted from a budget.
In addition to asking subjects to choose between the two lotteries, we also elicited

their CU, asking how certain they are (in percentage terms) that they selected the option
they actually prefer (Enke and Graeber, 2023). Appendix Figure 9 shows a screenshot.
Each subject completed 50 choice problems.

Experiment Within Subject. To further verify that the difficulty of choice and of EV
problems are correlated, we implemented an additional experiment in which each sub-
ject encountered 20 problems in two ways: first as a choice problem and then as EV
task, or vice versa. Subjects first completed all 20 choice problems or all 20 EV problems,
where the order of choice and EV task was randomized across subjects.⁶ We generated
240 distinct choice sets, each of which was completed by 25 subjects, on average. To
study robustness to payout procedures, in the EV task part of this experiment, subjects
were paid out the EV of the lottery they selected, rather than receiving $10 if they made
the correct decision.

3.3 Implementation

Our own experiments were conducted on Prolific. See Appendix H for screenshots of
instructions and comprehension check quizzes. In EV Tasks, subjects earned a completion
fee of $6. In addition, 1 in 2 subjects was randomly selected to be eligible for a bonus
of $10 if they made the correct choice on a (uniformly) randomly selected decision.

⁶CU was measured using the following questions. EV task: “How certain are you that you actually
selected the lottery with the highest average payout?” Choice task: “How certain are you that you actually
prefer the lottery you chose above?”
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In Choice Tasks and Within Subject, participants received a fixed payment of $3.50. In
addition, 1 in 5 subjects were randomly selected to be eligible for a bonus wherein we
randomly selected one decision to be payout-relevant.
We pre-registered the predictions and sample size for experiments Choice Tasks and

Within Subject on aspredicted.org under #130662 and #173455. We didn’t pre-register
the EV Tasks experiment because there was no specific hypothesis: we use these data to
create complexity indices, rather than to show that a specific feature would matter.

4 Development of the Complexity Indices

4.1 Choice Set Complexity

We train the complexity indices on a randomly selected subset of 75% of all EV problems
(train set) and use the remaining 25% as a test set. A main question is which features
should be included in the indices. To balance the typical tradeoff between interpretabil-
ity and completeness, we strike a middle ground and proceed in three steps.

1. Exploratory LASSO index: We assemble a large vector of features. Because many
of these features will be intra-correlated (giving rise to multicollinearity), we esti-
mate LASSO regressions, such that only a relatively small number of features will
have non-zero coefficients.

2. Handcrafted index: We inspect the LASSO-generated index and approximate it
based on only a handful of simple and easily interpretable features.

3. Assess completeness:We benchmark the handcrafted index against a machine learn-
ing ensemble.

Exploratory LASSO indices. Appendix B.2 provides a list of all 44 choice set features
that we consider. When a feature is defined over a single lottery (such as a lottery’s
variance), we compute the average value in the set.⁷ We also consider non-linear trans-
formations of these averages (log and square).⁸ We only consider primitive features of
the lotteries, rather than also framing effects. We don’t allow interactions between fea-
tures (as we will see below, they do not matter much).⁹

⁷Computing averages appears justified because, in our data, the effect of lottery-specific features (such
as variance) on mistake rates generally points in the same direction for both lotteries.
⁸Whenever we say we compute the log of x , we mean that we compute ln(1+ x).
⁹We also don’t allow features of choice sets encountered in the past. This appears justified because,

compared to the experimental efficient coding literature (e.g., Frydman and Jin, 2021, 2023), we (i) im-
plement many fewer trials and (ii) vary many more features, both of which make it less likely that subjects
differentially learn higher cognitive precision for some problems than others.
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Some of the features we consider may affect choice for standard expected utility
reasons, such as a lottery’s variance. However, as emphasized in Section 5.3, the way
in which features like variance affect choice through complexity is distinct from what
expected utility theory prescribes. Moreover, because our indices are developed based
on the EV Task, utility curvature cannot drive any feature’s inclusion in an index.
We set the LASSO penalty parameter to the value that minimizes mean squared

error in the train set. Appendix Table 6 reports the results of the LASSO regressions.
Because many of the features are highly intra-correlated (e.g., range and variance of
payouts), the particular features that get selected by the LASSO should not be viewed as
uniquely important, but instead as representative of broad classes of important features.

Handcrafted indices. This observation motivates us to develop handcrafted versions
of the complexity indices that are based on fewer features, each of which represents a
broad class of features that we now discuss. While we recognize that manually select-
ing features raises potential concerns over artifically generating “desired” results, we
view these as ultimately inconsequential because the handcrafted indices turn out to be
almost perfectly correlated with the exploratory LASSO indices.
At a formal level, Appendix Table 7 reports OLS estimates of eq. (5) using our hand-

selected features.1⁰ Our indices OCI and SCI correspond to the fitted values of these
regressions. To present the results in a more intuitive way, Figure 1 reports correlation
coefficients between error rates (or CU) and those choice set features that enter our final
indices.11

Excess dissimilarity: The strength of tradeoffs across states. The standout predic-
tor of both objective and subjective complexity is the excess dissimilarity between the
lotteries in a set, by which we mean the degree to which lotteries are dissimilar from
each other above and beyond their difference in expected value. As illustrated in the
top left panel of Figure 2, we compute dissimilarity by overlaying the cumulative dis-
tribution functions (CDFs) of the two lotteries and calculating the summed (absolute)
area between the two. The so-called “Wasserstein 1-distance” between the CDFs of two
lotteries is given by δA,B =

∫

R |FA(x)− FB(x)|d x . We then define excess dissimilarity as:

dA,B = δA,B − |EV (A)− EV (B)|. (6)

To illustrate, the following lotteries have low excess dissimilarity. Option A: “Get $20
with probability 80%”, and Option B: “Get $21 with probability 70%”. In contrast, Op-

1⁰Our procedure implicitly assumes that a single index captures complexity across all different types of
menus. In ancillary analyses, we experimented with a finite mixture approach in which different types of
menus are assigned different complexity indices. The results show that the resulting “within-type” indices
are highly correlated (ρ ≥ 0.95) with OCI.
11Appendix Figure 15 reports the analogous results for the Within Subjects experiment.
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Figure 1: Raw and partial correlation coefficients between task-level error rates / average CU and choice
set features in the train set in the EV Tasks experiment (1,587 unique problems). Whiskers show 95%
confidence intervals. Partial correlations are calculated controlling for all of the other features in the
figure. Log scale, mixed / loss payouts and log number of states are computed as averages across the
lotteries in a set.

tion B’: “Get $70 with probability 21%” has high excess dissimilarity with Option A,
even though B and B’ have the same EV. Thus, choosing between A and B is predicted
to be simpler than choosing between A and B’.
Excess dissimilarity is large when the lotteries have very different advantages and

disadvantages. We find it helpful to think of this measure as capturing “tradeoff com-
plexity” – complexity as it arises from the difficulty of aggregating tradeoffs across dif-
ferent payout states. Excess dissimilarity equals zero when there are no tradeoffs across
states (i.e., when differences in EV arise due to first-order stochastic dominance). We
can loosely think of excess dissimilarity as a measure of how “close” lotteries A and B

are to having a dominance relationship. Excess dissimilarity is fundamentally an object
that captures the difficulty of comparative evaluations: how the two lotteries perform in
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their worst state, their best state, their “median” state, and so on.12
It may appear surprising that dissimilarity adds to complexity because researchers

often think of “similar” as “difficult”. The key distinction is that here “similarity” does not
refer to the proximity to indifference (similarity of aggregated values) but, instead, to
the similarity of the disaggregated objects, netting out the similarity in aggregate value.
Figure 1 shows the raw correlation between log excess dissimilarity and error rates as

well as average CU, which is approximately r = 0.5 in both cases. Log excess dissimilarity
is the strongest predictor of both errors and CU in our data and thus the most important
component of our complexity indices.
The top right and bottom panels of Figure 2 illustrate how variation in excess dissim-

ilarity – as induced by variation in payouts and probabilities – predicts mistakes in the
EV task. Each plot shows a binned scatter plot that controls for the absolute value dif-
ference between the two options in the set (because excess dissimilarity is dissimilarity
net of absolute expected values difference).
In the top right panel, we consider the decision between a safe payment and a binary

lottery, where (to illuminate the role of payouts) the probability of the upside is restricted
to be in [0.4,0.6]. The plot shows that as the spread between the lottery upside and
downside increases (which increases the dissimilarity between the lottery and the safe
payment), mistake rates strongly increase. This insight will be important below because
the spread of payouts (or lottery variance) is essential in the estimation of risk aversion.
In the bottom left panel, we illustrate the role of payout probabilities. Again, we

consider the decision between a safe payment and a binary lottery, and vary the proba-
bility of the lottery upside. Dissimilarity between a lottery and a safe payment is small
when the probabilities are very extreme. Consistent with the idea that low dissimilar-
ity produces fewer mistakes, we see that mistake rates are strongly hump-shaped, with
intermediate probabilities around 50% producing the highest error rates.
Finally, to illustrate that it is not generically true that intermediate probabilities con-

tribute to dissimilarity and complexity, we consider the decision between two lotteries,
A and B, where the probability of B’s upside is in [0.4,0.6]. The bottom right panel shows
mistake rates as a function of the probability of A’s upside. In this case, dissimilarity is
lowest when A’s upside probability is intermediate. Indeed, mistake rates are now U-
shaped. Viewed in combination, the bottom left and bottom right panels illustrate that
complexity is fundamentally based on what a lottery is compared with.
The idea that dissimilarity contributes to choice complexity is prominent in percep-

tual psychology and has attracted some attention in economics (e.g., Rubinstein, 1988;

12We are implicitly putting the two lotteries into a common, perfectly correlated state space. Formally,
we think of the state x as a draw from a Uniform distribution on [0,1], and we say the lotteries A and B
are “perfectly correlated” in that they return F−1

A (x) and F−1
B (x), respectively.
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Figure 2: Top left panel: Definition of excess dissimilarity. Top right panel: Binned scatter plot of error
rate in EV task as a function of difference between lottery upside and downside, when decision is between
a binary lottery (with probability of upside in [0.4,0.6]) and a safe payment. Bottom left panel: Binned
scatter plot of error rate in EV task as a function of probability of lottery upside, when decision is between
binary lottery and safe payment. Bottom right panel: Binned scatter plot of error rate in EV task as a
function of probability of lottery upside, when decision is between binary lottery and another binary
lottery with probability of upside in [0.4,0.6]. All binned scatter plots control for the absolute expected
values difference between the two options.

Fishburn, 1976, 1978; Natenzon, 2019; He and Natenzon, 2022; Shubatt and Yang,
2024). A small psychology literature has shown that δA,B in our notation above is predic-
tive of choice noise (Buschena and Zilberman, 2000; Erev et al., 2002, 2010). We work
with dA,B because δA,B is mechanically correlated with the EV difference, and we some-
times desire to separate effects stemming from aggregation complexity and proximity.

Payout scale. Much research on number perception suggests that people find it harder
to process and transform larger numbers (Weber’s law). This intuitively adds to the diffi-
culty of integrating different payouts and probabilities. Our preferred measure of payout
scale for an individual lottery is the log average absolute payout; for the choice-set mea-
sure, we average this individual measure across the set.

Mixed and loss gambles. It appears cognitively harder for people to process negative
payouts. In our data, both pure loss gambles and mixed gambles produce significantly
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higher error rates and CU, compared to pure gains menus. To keep our indices sparse,
we generate one variable to capture these patterns, which is the fraction of lotteries in
the set that includes at least one negative payout.

Support. Figure 1 shows that the average (log) number of states in the choice set is
significantly correlated with error rates and CU. We include this variable in our complex-
ity indices, but we note that – while a main focus of the literature – it is a considerably
less important determinant of overall complexity than some of the other features.

Compound probabilities. The presence of compound lotteries intuitively leads to higher
aggregation complexity because they require an additional computational step (reduc-
tion). We find that compound probabilities are associated with both higher error rates
and higher CU.13

Proximity of expected values. Unlike the aforementioned features, the difference in
EV between the two options does affect the magnitude of errors in standard random
choice models. Figure 1 shows that proximity to indifference is indeed meaningfully
correlated with errors and CU. Because this relationship is concave, we work with the
natural log in the construction of our handcrafted indices. Importantly, however, the
link between proximity and errors (or CU) is relatively small compared to some of the
features that capture aggregation complexity. This is a first indication of what we repeat-
edly emphasize thoughout this paper: errors (and our complexity indices) largely reflect
aggregation complexity rather than proximity.

Composite complexity indices. OCI and SCI consist of linear combinations of the fea-
tures listed above, with weights given by the OLS coefficients in Appendix Table 7.1⁴ In
the EV Tasks test set data, OCI and SCI exhibit a raw correlation of r = 0.87, (p < 0.01).
An important question is how complete the complexity indices are. In principle, they
could be incomplete for two reasons. First, the list of features that the LASSO was based
onmay be incomplete. Second, interactions of featuresmay play an important role. To as-
sess completeness, we follow Fudenberg et al. (2022) and benchmark the out-of-sample
performance of our complexity indices against that of a machine learning ensemble, in-
cluding a black-box convolutional neural net. Appendix B discusses the details. In short,
we find thatOCI explains 95% of the variation relative to a machine learning benchmark,
and that excess dissimilarity alone is 65% complete.

13For compound probability choice problems, one option involves an unknown probability p, which
subjects know is drawn uniformly from some specified range.
1⁴We winsorize all complexity indices from below at zero and from above at 0.5 because they capture

predicted mistake rates.
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4.2 Lottery-Specific Complexity

Our main index quantifies the complexity of a choice problem rather than of a single
lottery. We believe this is important because – by the logic of dissimilarity causing com-
plexity – the complexity of an individual lottery will depend on what it is compared
against. Still, one useful special case that attracts much attention in theoretical and em-
pirical practice is to quantify the complexity of a single lottery when the alternative is
a safe payment. In particular, a natural benchmark is to compute the complexity of a
lottery as the difficulty of choosing between the lottery and a safe payment that is just
below (or above) its own EV.
We construct indices of objective and subjective lottery complexity (OLCI and SLCI)

in an analogous fashion to OCI and SCI, except that they are computed based on a two-
item ‘choice set’ that comprises a lottery and its own EV. Thus the indices of lottery
complexity comprise as features a lottery’s support, scale, negative payouts, compound
probabilities, and excess dissimilarity between a lottery and its own EV.
Given that the dissimilarity between a lottery and its own EV basically amounts to a

lottery’s variance, this means that – when the alternative is a safe payment – variance is
a key predictor of a lottery’s complexity. Indeed, in our EV Task, the correlation between
log lottery variance and error rates (when the alternative is a safe payment) is r = 0.42

(p < 0.01).

4.3 Evidence on Identifying Assumption

Our main identifying assumption is that the difficulty of a choice problem is monotone
in the difficulty of the analogous EV problem. We can make progress on assessing the
validity of this assumption by assessing the distribution of CU in real choice tasks, in
particular how it varies with the complexity features derived from the EV task. We do
so both within and across subjects.
First, in our Choice Tasks data, we correlate average CU in a choice problem with SCI

(which captures predicted CU in the EV problem). The correlation is r = 0.63 (p < 0.01).
Similarly, the correlation between average CU in choice and OCI is r = 0.47 (p < 0.01).
See Appendix Figure 10. This is fundamentally ‘between’ evidence, both in the sense that
(i) no subject completed both choice and EV problems; and (ii) the choice problems in
the Choice Tasks experiment are distinct from the ones that were used to develop the
indices.
Second, in our Within Subject experiment, we can study the same question from a

‘within’ angle, both in the sense that (i) the same subject completes both choice and
EV problems; and (ii) these problems are in fact identical, which allows us to directly
link CU in choice and CU in the same EV task. We find that the correlation between CU
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across the two tasks – controlling for subject fixed effects – is r = 0.30 (p < 0.01). See
Appendix Figure 14.1⁵ These results are encouraging because they strongly suggest that
the same features determine how difficult it is to gauge expected utilities on the one
hand and expected values on the other hand.
To assess whether it is indeed true that any given complexity feature (rather than the

composite index) affects CU in choice and in the EV task in similar ways, Appendix Ta-
ble 11 compares the correlations between the features in our indices with CU in choice
and CU in the EV task. The results show that the correlations between CU and fea-
tures are usually very similar (in particular for excess dissimilarity, support and losses),
which further suggests that the sources of complexity are similar in the two types of
problems.1⁶

5 Behavioral Responses to Complexity

We now deploy the complexity indices to explain choice behavior. Unless noted other-
wise, we pool the data from our own Choice Tasks experiment with those collected by
Peterson et al. (2021). In our analyses, the level of observation is not an individual de-
cision but, instead, choice rates in a unique choice problem.
We study the link between complexity and choice in three steps. First, we provide a

few illustrative examples of low- and high-complexity problems and associated choice
patterns. While cherry-picked, these examples are helpful in building intuition for the
results in the very large set of problems that we use for our main analysis.
Second, we systematically study the role of the index of objective complexity, OCI.

Given the similarity between OCI and SCI, the results using SCI are essentially identical.
In a third step, we study separate lottery features.

5.1 Examples

Table 2 presents six example choice problems. Five of them are selected to have similar
EV differences but varying OCI. All problems are such that Option A (the lottery with
the weakly larger number of states) has a lower EV.
Problem 1 is very simple even though lottery A has three distinct payout states. This

is because it features dominance (thus excess dissimilarity is 0), but also because the

1⁵The correlation between CU in choice and a binary indicator for making a mistake in the EV task
– again controlling for subject fixed effects – is r = 0.08 (p < 0.01). That the correlation with objective
mistakes is smaller in this within-subjects exercise is unsurprising and mechanical because when we look
within a given subject, mistakes are a binary indicator while CU is a more continuous measure of difficulty.
1⁶The most notable exception are compound probabilities, which are significantly positively correlated

with CU in the EV task but not in the choice task.
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Table 2: Example choice problems

# Probabilities A Payouts A Probabilities B Payouts B EV(A)-EV(B) OCI Frac. chose A

1 0.25, 0.375, 0.375 -21, 0.5, 1.5 1 2 -6.5 0.06 4%

2 0.99, 0.01 18, 33 1 25 -6.9 0.10 9%

3 0.95, 0.05 -2, 28 0.75, 0.25 1, 22 -6.8 0.12 16%

4 0.75, 0.25 8, 52 1 26 -7 0.24 42%

5 0.8, 0.2 -30, 34 0.1, 0.9 7, -12 -7.1 0.27 43%

6 0.4, 0.3, 0.15, 0.15 -28, 31, 29, 25 1 7 -0.8 0.42 41%

payout scale is relatively low. To see the role of excess dissimilarity more clearly, con-
sider problems 2 and 3. In both problems, there is no dominance but the problems are
intuitively simple. The reason is that excess dissimilarity is very low because the payout
probabilities in lottery A are relatively extreme and the alternative is a safe payment.
For instance, in problem 2, one can intuitively see that lottery A “is worth approximately
$18,” which makes B’s payout of $25 look transparently superior.
In contrast, in problems 4 and 5, excess dissimilarity is high because the options have

different advantages and disadvantages. For example, in problem 5, heuristic pairwise
comparisons of the lottery upsides and downsides is difficult.
Finally, problem 6 illustrates a very high complexity problem in which the drivers

of complexity are high excess dissimilarity, large support, a presence of losses, and also
very similar EVs.

5.2 Choice Complexity, Behavioral Attenuation and Noise

A first potential implication of complexity – highlighted by a recent literature – is a form
of attenuation, according to which decisions become less elastic to variation in problem
fundamentals. Unlike attenuation bias in econometrics, such ‘behavioral attenuation’ is
not driven by mismeasured variables (after all, we as researcher perfectly observe the
gambles participants are exposed to). Rather, it is driven by a noisy or heuristic decision
process – by a noisy or heuristic mapping of problem fundamentals into a decision.
The top left panel of Figure 3 shows choice rates for lottery A as a function of the

EV difference between A and B, separately for choice problems that are above or below
median OCI. We label the lotteries such that lottery A is always the one with a weakly
larger number of distinct payout states (lottery B is often a safe payment).
The figure shows a binned scatter plot because of the large number of underlying

choice problems. These plots are constructed such that each dot represents an equal
number of choice problems (about 109 problems per dot), and show the average fraction
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of subjects choosing lottery A across all of the choice problems in a bin. We see that
choice rates in problems that are predicted to be more complex are substantially more
compressed towards 50% and, hence, more attenuated.1⁷
A potential concern is that these differences between high- and low-complexity prob-

lems are confounded by the fact that the appropriate x-axis is not the EV difference but
the true expected utility difference. To gauge this, the top right panel shows analogous
results by plotting empirical choice rates against the estimated value difference in a
cumulative prospect theory (CPT) model.1⁸ The results are very similar.
The middle panels provide a complementary perspective, by showing choice rates for

lottery A as a function of the continuous OCI index. In the left panel, the red dots corre-
spond to cases where EV (A)> EV (B) and the blue dots to cases where EV (A)< EV (B).
The middle right panel is constructed analogously but splits by CPT value difference.
Thus, for an EV (or CPT) maximizer, the choice rates should be 0% and 100%. More
interestingly, even standard random choice models would predict that choice rates are
constant in OCI. Instead, we see that choice rates monotonically approach 50% as com-
plexity increases. The magnitude of this effect is very large: choice rates for the option
with the higher EV decrease by about 40 percentage points going from very low to very
high complexity. These results hold regardless of whether or not we control for the EV
difference (or the estimated CPT value difference). This suggests that the vast majority
of the explanatory power of OCI for behavioral attenuation is due to the effects of ag-
gregation complexity (chiefly excess dissimilarity) rather than proximity to indifference.
We further quantify this point below.

Noise or stable heuristics? While the previous results suggest that complexity predicts
attenuation (an insensitivity of decisions to fundamentals), this could occur through at
least two different mechanisms. First, higher complexity could make people’s evalua-
tions more noisy, producing attenuation akin to the effects in random choice models.
Second, attenuation could reflect the use of stable heuristics. For instance, usage of sta-
ble rules such as max-min can produce behavior that is only weakly correlated with
maximizing EV or CPT and can, hence, produce compressed choice functions such as
those in Figure 3.
To study mechanisms, we link OCI to a standard measure of random choice: across-

1⁷One interpretation of the compression towards choice rates of 50-50 is that subjects have a prior
belief over the expected utility associated with Options A and B, and that this prior is uninformative. We
ran additional pre-registered experiments that study the role of prior beliefs and how they interact with
problem complexity. In these experiments, we experimentally manipulate prior beliefs over which option
is “better”. This treatment has a larger effect on choice for more complex problems. To conserve space,
these experiments are summarized in Appendix F of our earlier NBER working paper (#31677).
1⁸As discussed in detail in Section 6 and Appendix D, we estimate CPT as a representative agent model

with the specifications that – according to a recent meta-analysis (Brown et al., 2024, Table 3) – are most
common in the literature: a reference point of zero and CRRA utility.
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Figure 3: Objective complexity and behavioral attenuation in lottery choice. In the top and middle panels,
the y-axis is the fraction of subjects choosing lottery A. The top panels implement a median split by OCI,
separately within each percentile of the EV difference (or the estimated CPT value difference) between
A and B. The middle panels split the choice problems according to whether A or B has a higher EV (or
a higher estimated CPT value difference). In the bottom panels, the y-axis shows the fraction of subjects
who are inconsistent at least once. The middle panel controls for the estimated CPT value difference and
its square, and the bottom right panel for the absolute CPT value difference and its square. All panels show
binned scatter plots. Top panels constructed from 10,898 choice problems, middle and bottom panels omit
problems with absolute EV difference of less than $0.20, hence constructed from 10,366 choice problems.

trial variability in repetitions of the same problem (within-subject choice inconsisten-
cies). Recall that in Peterson et al. (2021), each subject that completed any given choice
problem did so five times (consecutively). For each choice problem, we compute the frac-
tion of subjects who are inconsistent at least once. In these analyses, we restrict attention
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Table 3: Benchmarking OCI and proximity to indifference

Dependent variable:
Frac. subjects inconsistent Deviation rate from CPT prediction Avg. cognitive uncertainty

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OCI 0.70∗∗∗ 0.81∗∗∗ 50.0∗∗∗
(0.01) (0.01) (3.97)

Abs. EV diff. -0.0078∗∗∗ -0.017∗∗∗ 0.039
(0.00) (0.00) (0.18)

Abs. CPT value diff. -0.017∗∗∗ -0.045∗∗∗ 0.17
(0.00) (0.00) (0.32)

Constant 0.27∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.12∗∗∗ 0.41∗∗∗ 0.44∗∗∗ 2.94∗∗∗ 15.6∗∗∗ 15.4∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.93) (0.99) (0.84)

Observations 10398 10398 10398 10898 10898 10898 500 500 500
R2 0.26 0.02 0.03 0.32 0.11 0.21 0.24 0.00 0.00

Notes. OLS estimates, robust standard errors in parentheses. An observation is a choice problem. The dependent variable
in columns (1)–(3) is the fraction of subjects who are inconsistent at least once in the five repetitions of the choice problem.
In columns (4)–(6) it is the fraction of decisions that does not equal the prediction of a full CPT model, see Appendix D.
In columns (7)–(9) the dependent variable is average self-reported CU in the choice experiments (in percent). ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

to problems in which the absolute EV difference is at least $0.20 to reduce concerns that
“inconsistencies” simply reflect indifference (the results are identical in the full sample).
The bottom panels of Figure 3 show binned scatter plots of problem-level choice

inconsistencies against OCI, either the raw correlation (left panel) or controlling for
the absolute estimated CPT value difference (right panel). Moving from OCI = 0 to
OCI= 0.5 is associated with an increase in the frequency of choice inconsistencies of 35
percentage points. The raw and partial correlations are always around r ≈ 0.49− 0.53

(p < 0.01).

Benchmarking. A natural question is how quantitatively important complexity is for
understanding choice behavior. Here, a natural point of comparison is the proximity to
indifference (in the choice task), which is a main driver of choice errors in standard
random choice models. We, hence, compare the predictive power of OCI with that of
the subjective value difference in a CPT model, estimated as described in Appendix D.
Because OCI includes the proximity of the EVs of the two options, we also benchmark
OCI against the EV difference.
For our benchmarking analysis, we desire proxies for the frequency of choice errors.

Building on the analysis above, we work with three such proxies: (i) the fraction of
subjects who are inconsistent at least once in repetitions of the same problem; (ii) the
fraction of decisions that does not correspond to choosing the lottery that – according
to an estimated CPT model – delivers higher value; and (iii) average self-reported CU in
a choice problem.
Table 3 shows the results. The main metric of interest is the variance explained in

23



each regression. There are two main takeaways. First, for all dependent variables, OCI
explains a considerably larger fraction of the variation than the EV difference. This again
shows that the vast majority of the predictive power of OCI reflects the difficulty of ag-
gregating the constituent components of a lottery choice problem, rather than proximity
of the expected values.
Second, again for all dependent variables,OCI explains a substantially larger fraction

of the variation than the estimated CPT value difference. For example, in column (6),
the estimated value difference in a CPT model almost by construction explains a sizable
share (21%) of the frequency of decisions that do not maximize CPT value. Yet the
variance explained by OCI is substantially larger (36%, column (4)).

5.3 Separate Lottery Features

Up to this point, we focused on the overall complexity of a choice set. We now disag-
gregate the previous results in two ways. First, we study the complexity of individual
lotteries rather than of a choice set as a whole. This allows us to study not only behavioral
attenuation but also potential complexity aversion. Second, we analyze the separate fea-
tures that jointly make up the complexity index. After all, given that excess dissimilarity
drives the vast majority of the variation in OCI, it is not at all obvious that the results
emphasized earlier – behavioral attenuation and choice noise – apply to every feature
that is a part of the index.
To transparently study the complexity of individual lotteries, we restrict attention

to decisions between a lottery (option A) and a safe payment (option B). This can be
thought of as fixing the complexity of B at zero and varying the complexity of A.
We focus on three lottery features given their disproportionate importance and promi-

nence in the literature: (i) lottery variance because, as discussed in Section 4.2, it is the
main driver of excess dissimilarity when the alternative is a safe payment; (ii) lottery
support; and (iii) compound probabilities.

Lottery variance: Behavioral attenuation and small-stakes risk aversion. The left
panel of Figure 4 shows a binned scatter plot of choice rates for the lottery as a function
of the difference between the estimated CPT values of the lottery and the safe payment.
To study the role of complexity, we now split by median lottery variance. In this plot,
aversion to variance is indicated by a uniform downward shift of choice fractions. Thus,
if people are risk averse and the degree of attenuation was independent of variance,
we should expect choice rates for the high-variance lotteries to be lower than for the
low-variance lotteries everywhere. Complexity-driven attenuation, on the other hand,
is again indicated by a compression (or “flipping”) pattern, according to which observed
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Figure 4: Binned scatter plots of choice rates (left panels) and choice inconsistency (right panels) for
problems that involve one non-degenerate lottery and one safe payment. In the left panels, the y-axis is
the fraction of subjects choosing lottery A. These panels implement a median split by lottery variance
(separately within each percentile of the estimated CPT value difference) or by the number of payout
states. In the right panels, the y-axis shows the fraction of subjects who are inconsistent at least once. Left
panels constructed from 6,476 choice problems, right panels omit problems with absolute EV difference
of less than $0.20, hence constructed from 6,137 choice problems.

risk taking can even increase in the lottery’s variancewhen the lottery is very unattractive
(the left part of the figure).
In the data, we indeed see a pronounced compression pattern. This implies that

people look risk averse when the lottery is attractive (to the right of zero), but risk
loving when the lottery is unattractive (to the left of zero).
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To highlight the confound this poses for estimating risk preferences, we restrict at-
tention to the 2,678 problems for which all payouts are weakly positive (and one option
is a safe payment), where we can estimate a standard CRRA expected utility model,
EU(x) = E[xα]. When we estimate this model on the sub-sample in which the lottery
has a higher EV than the safe payment, we estimate α̂ = 0.77 (s.e. = 0.01) – a typical
estimate suggesting small-stakes risk aversion. In contrast, when we estimate on the sub-
sample in which the lottery has a lower EV than the safe payment, we estimate α̂= 1.05

(s.e. = 0.01) – if anything, suggesting apparent risk loving preferences.1⁹ This exer-
cise shows that complexity-dependent attenuation can predictably bias the estimation
of preference parameters.
What is more, we can again provide evidence on the underlying mechanism. The top

right panel of Figure 4 shows that lottery variance strongly predicts choice randomness
(within-subject choice inconistencies). Thus the top left and top right panels paint a
consistent picture: as variance increases, choice becomes more random (and hence more
compressed to 50-50), which produces behavior that spuriously contributes to estimated
risk aversion or risk love.2⁰
We do not claim that genuine small-stakes risk aversion does not exist. Rather, the

point is that the indirect effect generated by complexity-dependent attenuation is so
strong that it can either amplify or entirely override any true aversion that likely exists.

Lottery support. The middle left panel of Figure 4 again shows choice rates for the lot-
tery (when the alternative is a safe payment) as a function of the estimated CPT value
difference, now split by whether the lottery has two or more payout states. Again, aver-
sion to complexity would be indicated by a horizontal downward shift, while attenuation
is indicated by a compression effect.
If anything, we seemild evidence of a compression effect and / or complexity seeking

behavior. These patterns do not hinge on the specific sample split but look very similar
when we instead split the sample at 3, 4 or 5 states. One reason for this null result is
plausibly the mechanical effect of a heuristic of treating all payout states roughly equally
(i.e., probability weighting). Intuitively, as is well-known in the literature (e.g. Wakker,
2022), if people treat all payout states the same to some degree, splitting up payout

1⁹We get similar results when we estimate a CARA model instead, EU(x) = E[−e−γx]. In the sub-
sample of problems in which the lottery has a higher EV than the safe payment, we estimate γ̂ = 0.0093
(s.e. = 0.0004), and in the sub-sample in which the lottery has a lower EV than the safe payment, we
estimate γ̂= −0.0008 (s.e.= 0.0003).
2⁰An alternative interpretation of the compression pattern in the top left panel of Figure 4 is that

subjects evaluate the lottery using CPT preferences and use the safe payment as a reference point, in which
case prospect theory would predict the results. However, this does not explain the strong effect of lottery
variance on random choice, which mechanically generates the compressed choice patterns. Moreover, this
alternative explanation is conceptually unattractive because – as shown in a recent meta-analysis (Brown
et al., 2024, Table 3) – prospect theory is almost always specified by assuming a reference point of zero
or of the expected value across all options (rather than of the alternative).
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states will either produce seeming complexity aversion or complexity lovingness, purely
depending on whether the split states are attractive or unattractive (relative to the other
payout states of the respective lottery). Indeed, as we unpack in Appendix Table 9, we
find that lottery support has a positive effect on choice rates for the lottery when the
low-probability events have relatively high payouts, yet a negative effect when the low-
probability events have relatively low payouts. The overall effect of weak ‘complexity
seeking’ in Figure 4 may thus simply reflect that in our dataset low-probability events
tend to have higher payouts, on average.
The middle right panel shows the lack of a correlation between the number of pay-

out states and choice inconsistencies (r = −0.01, p = 0.32). This is consistent with the
results in Arrieta and Nielsen (2023) who also document that a larger number of payout
states does not increase choice noise.

Compound probabilities. The bottom panel again shows the familiar figure for choice
rates, now split by whether the lottery involves compound probabilities. Here, we see a
strong and statistically significant complexity aversion effect – for any given estimated
CPT value difference, choice rates for the lottery are considerably smaller when it in-
volves compound probabilities. This result of compound aversion is consistent with var-
ious contributions in the literature (e.g., Halevy, 2007; Gillen et al., 2019). We cannot
consider the link between compound probabilities and choice inconsistencies because
the PEA experiment did not include compound probabilities.

6 Structural Estimations

6.1 Incorporating Complexity into Structural Analyses

The reduced-form analysis in Section 5 provided evidence for both complexity-driven
attenuation and complexity aversion. A natural question is thus how complexity can be
incorporated into structural estimation to quantify magnitudes.
Incorporating complexity aversion into structural analyses is relatively straightfor-

ward, by adding a cost function to the decision maker’s objective (e.g., Puri, 2022; Fu-
denberg and Puri, 2021). To incorporate complexity-driven attenuation, we allow the
responsiveness parameter (or error variance) in a random choice model to depend on
complexity. Suppose that choice probabilities are given by the logit model:

P(A) = F(EU(A)− EU(B);η) =
1

1+ e−η [EU(A)−EU(B)]
, (7)

where η is the conventional responsiveness (precision) parameter. In this model, un-
like in the reduced-form OCI index developed earlier, aggregation complexity and re-
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sulting attenuation (captured by η) can be separated from proximity to indifference.
Appendix D develops a ‘structural’ complexity index that allows researchers to let the
precision η in their estimated logit model to depend on complexity. This index of objec-
tive aggregation complexity (OAC) captures the predicted logit noisiness in the EV task,
where the prediction is computed as a function of the same choice set features as OCI.
Structural analyses can then be implemented by estimating a complexity-augmented
logit model, in which the precision is heteroscedastic and specified as

ηC ,D = η0 +η1/OACC ,D + εC ,D , (8)

where we supply OACC ,D and the researcher estimates η0 and η1.
This exercise relies on the same logic and identifying assumptions as the compos-

ite complexity indices discussed above, except that we need to invoke the additional
assumption that complexity impacts choice through the responsiveness parameter in a
logit model.

6.2 Evidence

We estimate eq. (7) and (8) using maximum likelihood for different combinations of
(i) the specification of the DM’s objective function and (ii) the presence of complexity-
dependent heteroscedasticity / attenuation (i.e., whether η1 is estimated or forced to
be zero). Appendix D presents details for the estimating equation for each model as well
as the resulting parameter estimates.
To start out, consider CPT. For each choice problem, the left panel of Figure 5 plots

the actual choice rate for the lottery that has higher value (according to an estimated
CPT model), as a function of OAC. In addition, we plot the model-predicted choice rates
in a CPT model. As is clear from this figure, CPT has highly systematic prediction errors
in our data: it strongly underpredicts how often people choose the estimated higher
value option when complexity is low but overpredicts it when complexity is high.
The right panel of Figure 5 shows the prediction errors of a CPTmodel augmented by

a complexity-dependent precision term. We see that predicted and actual choice rates
track each other much more closely.
To systematically assess model fit, Figure 6 plots the variance explained across each

of six models. To assess model completeness, the dashed horizontal line corresponds to
the variance explained of a machine learning ensemble (R2 = 74%).21
The first model assumes EV maximization and only estimates a constant precision

parameter. The second model estimates CPT and includes separate utility curvature

21This ensemble prediction is computed in an analogous fashion to the completeness analyses in Ap-
pendix B, i.e., as a combination of a convolutional neural net and several alternative models.
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Figure 5: Model prediction errors in pooled choice data as a function of objective aggregation complexity
(10,898 choice problems). Left panel: CPT model. Right panel: CPT model with complexity-dependent
precision parameter. Both panels plot the actual and predicted choice rates for the choice option that the
respective model predicts has higher CPT value.

parameters for gains and losses (and hence includes reference-dependence relative to a
reference point of zero), loss aversion and probability weighting. The third and fourth
models are identical to the first two except that they also estimate the parameter that
maps the complexity index into logit precision. The fifth and sixth models are identical
to the first two except that they also estimate two complexity aversion parameters, one
for compound lotteries and one for support.
The EV model has an R-squared of 44%, which increases to 57% in the full CPT

model. Introducing one parameter that maps problem complexity into logit precision
brings an EV model to R2 = 58%, slightly larger than the full CPT model. In other
words, in our dataset, complexity-dependent attenuation alone is quantitatively more
important than reference dependence, utility curvature, loss aversion and probability
weighting combined. The variance explained further increases to 68% under the full
complexity-dependent CPT specification.22
Complexity aversion has small effects on model fit. Consistent with the discussion in

Section 5.3, we usually estimate significant aversion against compound lotteries but not
against lotteries with many states (see Appendix Table 10 for parameter estimates). The
small increase in model fit (about 3% relative to CPT) is partly driven by the construction
of the dataset (only 0.4% of all choice problems involve compound lotteries).
We conclude from this analysis that allowing for complexity-dependent attenuation

is quantitatively important. This resonates with a literature in psychology that finds that
allowing the noise term in a stochastic choice model to depend on lottery dissimilarity

22These estimations assume CRRA utility and that the reference point is zero. Appendix Figure 13
shows that we get similar results when we assume CARA utility or a reference point that is given by
the expected value of all lotteries in an experiment. Regardless of how we specify CPT, we always find
that the variance explained increases substantially when the logit precision term is allowed to depend on
complexity.

29



.4
.5

.6
.7

Va
ria

nc
e 

ex
pl

ai
ne

d

EV
(1)

CPT
(5)

EV
+compl.
attenuat.

(2)

CPT
+compl.
attenuat.

(6)

EV
+compl.
aversion

(3)

CPT
+compl.
aversion

(7)

Model fit w/o and w/ complexity
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(δA,B rather than ln(dA,B)) yields the best model fit relative to other models proposed in
the psychology literature (Erev et al., 2010).

7 Discussion

This paper has made two contributions. First, we developed indices of objective and
subjective lottery choice complexity. A significant practical advantage of these indices is
that they consist of simple linear combinations of a handful of choice set features and
can, hence, be computed for any standard dataset. Our interpretable complexity indices
are highly complete, meaning that they perform almost as well as a black-box neural net.
A single feature – the excess dissimilarity that captures the tradeoff complexity between
the lotteries in a set – captures the bulk of variation in complexity.
Our second contribution is to comprehensively study behavioral responses to com-

plexity, which also allows us to illustrate the large predictive power of the complexity
indices. We find that the most important consequence of complexity in binary choice is
attenuation: an insensitivity of choice to problem fundamentals. This complexity-driven
attenuation explains considerably more of the variation in proxies for choice errors than
proximity to indifference. Moreover, in structural estimations, a single parameter that
maps complexity into logit responsiveness (or logit error variance) adds more explana-
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tory power than all prospect theory parameters combined. We now discuss what we
believe to be fruitful next steps.

A common complexity scale across papers. A common criticism of lab experiments
is that researchers have many degrees of freedom in constructing the choice problems
they use to document an effect of interest. We believe that if our complexity indices were
standardly computed in lottery choice experiments going forward, they would provide
a standardized metric along which papers can be compared and assessed.

Real-world assets. The complexity indices we develop in this paper could be used to
quantify the complexity of real-world financial assets such as stocks, bolds and mutual
funds. All that would be required to do so is (i) information about the assets’ return
profiles (or information about what people know about these return profiles) and (ii) in-
formation about people’s choice sets.

Larger menus. A natural question is how our indices can be applied to larger choice
sets. In our EV Tasks experiment, we also included menus with between three and five
options. Appendix F discusses the results. Menu size is strongly linked to both error rates
and cognitive uncertainty. This suggests that incorporating menu size into our indices
would be productive. Themain challenge we see is that extending to larger menus would
necessitate generalizing measures such as excess dissimilarity to larger choice sets (see
Natenzon (2019) and Shubatt and Yang (2024) for steps in this direction).

The importance of dissimilarity/ tradeoff complexity. Economists frequently equate
the term “complexity” with “cardinality” or “size”. Our results, instead, suggest that
much of the complexity of lottery choice reflects the difficulty of aggregating relative ad-
vantages and disadvantages across payout states (“tradeoff complexity”). While various
theoretical papers have proposed that dissimilarity makes decisions difficult or noisy
(e.g., Fishburn, 1976, 1978; Natenzon, 2019; He and Natenzon, 2022), only recently
have researchers begun to use the idea of tradeoff complexity to explain classic behav-
ioral economics choice anomalies. Shubatt and Yang (2024) develop a model to propose
measures of dissimilarity-driven complexity in lottery, intertemporal and multiattribute
choice. They document that the logic of dissimilarity explains many famous regulari-
ties such as the context-dependent nature of probability weighting, apparent hyperbolic
discounting over money, preference reversals and more. We believe that much is to be
gained from further studying how complexity arises from the difficulty of aggregating
tradeoffs across states or problem dimensions.
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ONLINE APPENDIX

A Previous Literature

Table 4: Experimental literature on lottery complexity

Choice set feature Result Papers

Number of states Aversion Huck and Weizsäcker (1999), Sonsino et al. (2002), Iyengar
and Kamenica (2010), Carvalho and Silverman (2019), Bern-
heim and Sprenger (2020), Puri (2022), Fudenberg and Puri
(2021)

Number of states Seeking Birnbaum (2005), Erev et al. (2017), see Wakker (2022) for
additional references

Number of states Higher noise Hey (1995), Huck and Weizsäcker (1999), Sonsino et al.
(2002), Zilker et al. (2020), Arts et al. (2024)

Number of states More describable Arrieta and Nielsen (2023)

Absolute dist. b/w CDFs Higher noise Buschena and Zilberman (2000), Erev et al. (2002), Erev et al.
(2010)

Compound prob. Aversion Halevy (2007), Gillen et al. (2019)
Compound prob. Higher noise Enke and Graeber (2023)

Opaque payouts / prob. Higher noise Enke and Graeber (2023), Zilker et al. (2020)

Payout range Higher noise Bruhin et al. (2010)

Payout magnitude Higher noise Webb et al. (2021)

Dominance Lower noise Agranov and Ortoleva (2017)

Payout variance (deci-
sions from experience)

Higher noise Erev and Barron (2005)

B Derivation and Completeness of Complexity Indices

B.1 Screenshot of Interface

See Figure 7.

B.2 Potential Complexity Features

Consider a choice between two lotteries indexed by j and denoted by letters A, B etc.
Each lottery is characterized by payout probabilities (p j

1, . . . , p j
k j
) and payoffs (x j

1, . . . , x j
k j
),

where k j denotes the number of distinct payout states of lottery j. In the construction
of our complexity indices, we include the features listed in Table 5. Whenever a feature
is defined for a single lottery rather than a choice set, we include the average feature in
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Figure 7: Example decision screen in EV Tasks

the set. For continuous features (and “number of states”) f , we include the linear term
( f ), square ( f 2), and the natural log (ln( f + 0.1)).

B.3 Derivation of Indices

Table 6 shows the results of the exploratory LASSO regressions.
Table 7 shows the coefficients in each of the handcrafted indices. We winsorize the

indices from below at zero to and from above at 0.5 to facilitate their interpretation of
predicted error rates / predicted cognitive uncertainty. OAC and SAC capture predicted
logit noisiness and are thus only winsorized from below at zero.

B.4 Completeness

To assess completeness, we follow Fudenberg et al. (2022) and benchmark the out-
of-sample performance of our complexity indices against that of a highly flexible non-
parametric model. In particular, we construct an ensemble predictor from the predictions
of (1) our objective complexity LASSO, (2) OCI, and (3) a fully-flexible convolutional
neural network (CNN). The CNN is trained to predict error rates in a non-parametric
fashion based on the raw lottery features (payouts and probabilities) and the handcoded
features that enter our LASSO regressions. We then form an ensemble predictor by us-
ing OLS regression to combine these three predictors in a validation set of 105 problems.
We evaluate all models in a test set of 531 problems. Formally, completeness is defined
as C( ŷ) =

R2
ŷ−R2

Prox

R2
Ens−R2

Prox
where R2

ŷ is the variance explained by ŷ , R2
Ens is the variance ex-
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Table 5: Potential complexity features

Feature Defined on Formal definition

Number of states Option k j

Payout range Option max{x j
1, . . . , x j

k j
} −min{x j

1, . . . , x j
k j
}

Variance Option
∑k j

s=1 p j
s

�

x j
i

�2
−
�

∑k j

s=1 p j
s x j

s

�2

Payout variance Option 1/k j

∑k j

s=1(x
j
s − x̄ j)2

Probability variance Option 1/k j

∑k j

s=1(p
j
s − p̄ j)2

Magnitude Option 1/k j

∑k j

s=1 |x
j
s |

Pure Gains Option 1{x j
s ≥ 0∀ j}

Mixed Option 1{∃x j
s > 0∧ ∃x j

s < 0}

Pure Loss Option 1{x j
s < 0∀ j}

Distance to certainty Option 1/k j

∑k j

s=1 min{p j
s ; 1− p j

s}

Payout-weighted dist. to certainty Option 1/k j

∑k j

s=1 |x
j
s |min{p j

s ; 1− p j
s}

Entropy Option
∑k j

s=1 p j
s(−ln(p j

s))

Normalized payout dispersion Option 1/k j

∑k j

s=1
|x j

s− x̄ j |
| x̄ j |

Normalized Variance Option (1/Magn.2) · Var , with Magn., Var. as defined above

Irregular probabilities Option 1
�

p j
s /∈ {0.01, 0.05,0.1, ..., 0.9, 0.95,0.99} for s = 1, ..., k j

�

CDF self-distance Option
∑k j

s=1 |x
j
s − EV ( j)|p j

s

Compound Option

Compound Range Option Range of distribution of unknown p

Weak dominance Choice set 1{FA(x)≤ FB(x)∀x or FB(x)≤ FA(x)∀x}

Excess dissimilarity Choice set
∫

R |FA(x)− FB(x)|d x − |EV (A)− EV (B)|

Average absolute payoff difference Choice set 1/k
∑k

s=1 |x
A
s − xB

s |

Probability difference Choice set
∑

x∈X | fA(x)− fB(x)|, where X = {xA
1 , ...xA

kA
} ∪ {xB

1 , ..., xkB
}

plained by the ensemble predictor ŷEns, and R2
Prox is the variance explained by a baseline

model which depends only on proximity to indifference. Variance explained is always
calculated in the test set. Figure 8 shows the variance in mistake rates explained by OCI.
To comprehensively study completeness, we show the results for four different types of
indices. First, an index that only captures proximity to indifference: the absolute dif-
ference of the expected values and its square. Second, indices that only consist of the
separate aggregation complexity features, such as log excess dissimilarity. Third, our
handcrafted OCI index. Fourth, the analogous exploratory LASSO indices.
There are three main takeaways. First, proximity to indifference performs substan-

tially worse than our index. By construction, its completeness is 0%. Second, log excess
dissimilarity explains three times as much variation as proximity to indifference (66.6%
complete). Third, our handcrafted index is almost as complete as the exploratory LASSO
index (95% and 98% complete respectively). We conclude that our index captures a
large fraction of the predictable component of complexity.
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Table 6: LASSO coefficients for OCI and SCI

Coefficients Coefficients

Feature OCI SCI Feature OCI SCI
Intercept 1.5E-01 4.3E-02 Sq Scale -2.6E-07 2.4E-06
Log Abs. EV Difference -9.4E-02 -1.3E-02 Sq Range 1.3E-07
Scale -1.0E-03 Sq Variance 3.9E-11 -5.0E-10
Range -3.3E-04 Sq Payout Variance 9.3E-11 2.7E-10
Variance 1.6E-05 Sq Num States 9.1E-04
Pay-wtd DC -1.7E-03 Sq DC -1.1E-01
Probability Variance -4.4E-05 Sq Pay-wtd DC 1.3E-06
Payout Dispersion 6.6E-03 Sq Entropy -2.4E-02
CDF Self-Dist -1.2E-03 -2.4E-03 Sq Prob. Variance 1.9E+00
Log Scale 3.8E-02 2.2E-02 Sq Payout Dispersion 6.1E-03
Log Range 1.7E-02 Sq Norm. Variance 6.3E-03 1.8E-02
Log Variance -2.0E-02 Sq CDF Self Dist 1.3E-05
Log Payout Variance 1.7E-02 Gains -9.3E-03 -1.9E-02
Log Num States 2.8E-02 -2.4E-02 Irregular Probabilities 4.0E-02 -2.3E-03
Log DC -1.9E-01 Excess Dissimilarity -1.2E-03
Log Pay-wtd DC -7.5E-05 1.6E-02 Log Excess Dissimilarity 5.3E-02 3.5E-02
Log Entropy -2.4E-02 1.4E-01 Dominance -5.2E-02 -2.4E-02
Log Prob. Variance -3.7E-01 Compound 5.5E-02 3.6E-02
Log Payout Dispersion -8.8E-03 Compound Range 1.2E-01 1.0E-01
Log Norm. Variance -1.5E-02 Safe Option 7.2E-03 2.0E-02
Log CDF Self-Dist 3.6E-02

Notes. Coefficients of LASSO regression of problem-level errors rates or cognitive uncertainty on
choice set features in the EV Tasks experiment. DC = distance to certainty. Features that apply
to a single lottery (such as number of states) are averaged across the lotteries in the set. Only
features with at least one non-zero coefficient are included.
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C Details for and Analyses of Choice Experiments

C.1 Tables

Table 8: Summary statistics for problems across experiments

Experiment # options Safe payment # states Var Scale Mixed Dominance

EV Mean, median 2.1, 2 58% 3.3, 2 633, 164 34, 26 46% 5%
Tasks Range 2, 5 2, 7 0, 39440 1, 213

Choice Mean 2 80% 3.3 775 25.5 49% 7%
Tasks IQR 2, 2 2, 5 20, 735 14, 43

Choice Tasks Mean 2 59% 3.7 460 30 53% 17%
from PEA IQR 2, 2 2, 5 20, 553 15, 40

Notes. PEA = Peterson et al. (2021). For the EV Task, statistics are limited to problems with menu size two except
for # options. Scale = absolute average payout. We display information for the lottery with the largest number of
distinct payout states.

Table 9: Choice rates and lottery support

Dependent variable:
Fraction of subjects choosing lottery (in %)

Sample: Payout difference: Full ≥ 0 < 0 < −10 < −20 < −30

(1) (2) (3) (4) (5) (6)

Support of lottery 0.97∗∗∗ 1.26∗∗∗ 0.34∗ -0.26 -1.79∗∗∗ -2.97∗∗∗
(0.08) (0.10) (0.18) (0.30) (0.44) (0.55)

CPT value difference 6.67∗∗∗ 5.83∗∗∗ 7.97∗∗∗ 7.50∗∗∗ 6.42∗∗∗ 4.96∗∗∗
(0.07) (0.08) (0.12) (0.15) (0.20) (0.27)

Constant 48.8∗∗∗ 47.2∗∗∗ 50.8∗∗∗ 51.8∗∗∗ 55.7∗∗∗ 56.6∗∗∗
(0.36) (0.48) (0.60) (0.87) (1.20) (1.54)

Observations 6476 3725 2751 1682 866 410
R2 0.59 0.57 0.64 0.60 0.56 0.49

Notes. OLS estimates, robust standard errors in parentheses. An observation is a choice
problem. The sample consists of problems in which A is a non-degenerate lottery and
B is a safe payment. The sample is split by the difference in average payouts between
states that have low probability (defined as smaller than 1/N) and states that have high
probability (defined as larger than 1/N), where N is the number of states of A. Positive
values mean that low-probability states have relatively high payouts. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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C.2 Figures

Figure 9: Example decision screen in Choice Tasks
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Figure 10: Average cognitive uncertainty in choice and complexity indices in experiment Choice Tasks. The
figures show binned scatter plots of average cognitive uncertainty in each of 500 lottery choice problems,
as a function of the predicted complexity indices. In the figure, an underlying observation is a choice
problem. Figure is constructed from subjects who did not complete any EV task. Data from 250 subjects
and 500 choice sets.
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C.3 Replication of Figures 3 and 4 Excl. Losses in PEA data
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Figure 11: Replication of Figure 3, excluding choice problems in PEA dataset that involve losses.

43



.1
.3

.5
.7

.9
Fr

ac
. c

ho
os

in
g 

lo
tte

ry

-8 -3 2 7
CPT(Lottery) - CPT(Safe payment)

Low variance High variance

Alternative is safe payment
Risk taking and lottery variance

.2
.3

.4
.5

.6
Fr

ac
tio

n 
of

 in
co

ns
is

te
nt

 s
ub

je
ct

s
0 2 4 6 8

Log lottery variance

Alternative is safe payment
Within-subject inconsistency and lottery variance

.1
.3

.5
.7

.9
Fr

ac
. c

ho
os

in
g 

lo
tte

ry

-8 -3 2 7
CPT(Lottery) - CPT(Safe payment)

Two states More than two states

Alternative is safe payment
Risk taking and lottery support

.2
.3

.4
.5

.6
Fr

ac
tio

n 
of

 in
co

ns
is

te
nt

 s
ub

je
ct

s

2 4 6 8 10
Average number of payout states

Alternative is safe payment
Within-subject inconsistency and lottery support

.1
.3

.5
.7

.9
Fr

ac
. c

ho
os

in
g 

lo
tte

ry

-8 -3 2 7
CPT(Lottery) - CPT(Safe payment)

No compound Compound

Alternative is safe payment
Risk taking and compound probabilities

Figure 12: Replication of Figure 4, excluding choice problems in PEA dataset that involve losses.
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D Details on Structural Estimations

D.1 Derivation of Structural Complexity Index

Suppose that choice probabilities are given by the logit model:

P(A) = F(EU(A)− EU(B);η) =
1

1+ e−η [EU(A)−EU(B)]
, (9)

where η is the conventional responsiveness (precision) parameter. We define the aggre-
gation complexity of a choice problem as the inverse of the decision-maker’s precision
for that problem. Inverting the logit CDF,

sA,B :=
1
ηA,B

=
EU(B)− EU(A)

ln
�

1
P(A) − 1
� . (10)

Again, we cannot observe this object in choice data since we do not know the utility func-
tion. However, in the EV task, we can compute the “implied logit precision”23 because
we observe both the EV difference and the empirical rate of choosing A.

sEV
A,B :=

1
ηEV

A,B

=
EV (B)− EV (A)

ln
�

1
P(A) − 1
� . (11)

Similarly to before, we develop an index of predicted aggregation complexity by im-
posing the assumption that the problem-specific precision in the choice task is a linear
function of the precision in the EV task,

ηA,B = η0 +η1
1

sEV
A,B

with η1 > 0. (12)

Definition 2. The objective aggregation complexity (OACC ,D) of choice set {C,D} under a
logit model is given by the prediction of the regression

sEV
A,B =

N
∑

i=0

αi f
A,B

i + εA,B . (13)

where sEV
A,B is calculated as in (11). Thus, the index is OACC ,D = ŝEV

C ,D =
∑N

i=0 α̂i f
C ,D

i .

We define an analogous index of subjective aggregation complexity (SAC), in which
objective mistakes rates in the EV task are replaced with subjective ones (CU).

23Empirically, we winsorize selection rates for the higher EV lottery from below at 0.51 (since other-
wise (10) is undefined). Next, we winsorize the across-problem distribution of ŝEV

A,B at the 85th percentile
because sEV

A,B can explode when selection rates for the wrong lottery is close to 50% or when the expected
values difference is very small.
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D.2 Model Estimation

Cumulative prospect theory. We allow up to four additional parameters: loss aversion
with respect to a reference point of zero, separate utility curvature for gains and losses,
and probability weighting:

EUC PT (x) =
∑

i

πiu(x i) , (14)

where

u(x) =







xα if x ≥ 0

−λ(−x)β if x < 0
(15)

and πi is a Tversky and Kahneman (1992) cumulative prospect theory decision weight
with capacity function

w(p) =
pγ

(pγ + (1− p)γ)1/γ
. (16)

Complexity aversion / seeking. In some specifications, we allow the value function to
incorporate as-if complexity preferences. Based on earlier results, we allow for aversion
(or seeking) responses to the number of states in the lottery and whether the lottery is
compound. For these models, we let the value function take the form

V (x) = EU(x) + c0 · Compound + c1 · log|support(x)|. (17)

Note that negative values of c0 or c1 indicate complexity aversion; positive values
indicate complexity seeking. In robustness checks (available upon request), we model
states-aversion using a three-parameter sigmoid function as proposed by Fudenberg and
Puri (2021) and find similar results.

Estimation results. Table 10 summarizes the parameter estimates across the different
models. In our likelihood function, we weight each “person-problem” equally. Though
the problems from Peterson et. al. were repeated five times, the repetitions were consec-
utive, so we do not treat them independently. The choice data we collected contains no
repetitions. We report standard errors for themaximum likelihood estimation procedure,
which we derive from numerically estimated Hessian matrices.

Alternative specifications. Figure 13 shows the variance explained of a series of al-
ternative models. The first three models are the ones reported in the main paper. The
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Table 10: Parameter estimates for model estimations

Model

Parameter EV CPT EV + CA CPT + CA EV + CN CPT + CN
α 0.8 0.78 0.745

(0.005) (0.01) (0.006)
β 0.783 0.782 0.74

(0.01) (0.022) (0.01)
λ 0.942 0.922 0.879

(0.048) (0.121) (0.047)
γ 0.829 0.831 0.81

(0.004) (0.004) (0.005)
c0 -6.295 -0.969

(0.622) (0.228)
c1 0.42 0.43

(0.039) (0.025)
η0 0.128 0.28 0.044 0.153

(0.001) (0.006) (0.002) (0.004)
η1 0.296 0.609

(0.005) (0.018)

Notes. Parameter estimates for model estimations described in Section 6. “+ CA” = allows for
complexity aversion. “+ CN = allows for complexity-dependent attenuation (η)”.
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Figure 13: Variance explained of different choice models. Number of estimated model parameters in
parentheses. R2 is computed by first estimating each model, then using estimated model parameters to
predict choice rates, and then regressing actual on predicted choice rates in the test set. The first model
assumes EV maximization and a constant logit responsiveness term. The second model is the CPT model
we estimate throghout the paper, and the third model the extension of CPT in which logit precision de-
pends on complexity. The fourth model is the same CPT model, except that the reference point is assumed
to be the average payout across all lotteries in an experiment. The fifth model again augments this CPT
model with a complexity-dependent logit precision term. The sixth model is CPT with a reference point
of zero and CARA utility, and again the seventh model extends this model with a complexity-dependent
logit precision term. For all models, we show the performance in a test set of 2,726 choice problems after
the models were estimated in a train sample of 8,172 choice problems. The dashed line corresponds to
the performance of a machine learning ensemble.

fourth and fifth are analogous except that the reference point is assumed to be the av-
erage payout across all menus in each experiment. In the sixth and seventh models, we
estimate CARA rather than CRRA utility (with a reference point of zero).
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E Analyses of Within-Subject Experiment

In theWithin Subject experiment, each participated was confronted with identical prob-
lems in a choice frame and an EV Task frame. Figure 14 shows the correlation between
the elicitations of cognitive uncertainty across these two problem types, controlling for
subject fixed effects. These plots are constructed from 300 subjects x 20 problems =
6,000 observations, but we bin them into buckets to make the plot more informative.
Table 11 shows the correlation between cognitive uncertainty in each of the two

types of problems with problem features.
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Figure 14: Cognitive uncertainty in choice and in EV task in experimentWithin Subject. The figures show
binned scatter plots of cognitive uncertainty in a choice problem, as a function of cognitive uncertainty
in the EV task (left panel) or of a binary mistakes indicator in the EV task. An underlying observation is
a subject-decision (not a choice problem). The figure links identical choice sets in the choice and EV task
and is constructed controlling for subject fixed effects. Data from 300 subjects and 240 choice sets.

Table 11: Correlations of CU in choice and CU in EV task with complexity features

CU in choice CU in EV Log excess dissim Log scale Log support Frac. lotteries w/ loss Compound prob

Avg. CU in choice 1.00 0.72 0.64 -0.05 0.25 0.42 0.05
Avg. CU in EV task 0.72 1.00 0.69 0.13 0.25 0.47 0.29
Log excess dissim. 0.64 0.69 1.00 0.40 0.23 0.47 0.00
Ave log scale -0.05 0.13 0.40 1.00 0.14 -0.12 0.02
Ave log support 0.25 0.25 0.23 0.14 1.00 0.28 -0.14
Frac lotteries w/ loss 0.42 0.47 0.47 -0.12 0.28 1.00 -0.00
Compound prob 0.05 0.29 0.00 0.02 -0.14 -0.00 1.00

Notes. Pairwise Pearson correlations in the Within Subject experiment. The first two columns show the correlations of average cognitive
uncertainty in choice and the EV task with the complexity features.
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Within-subjects experiment: Error rates and choice set features

Figure 15: Raw and partial correlation coefficients between task-level error rates and choice set features
in theWithin Subject experiment (240 unique problems). Whiskers show 95% confidence intervals. Partial
correlations are calculated controlling for all of the other features in the figure. Log scale, mixed / loss
payouts, log number of states and compound probabilities are computed as averages across the lotteries
in a set.

F Extension: Larger Menus

In our EV Tasks experiment, we also included 102 menus with between three and five
options. These menus were excluded from all analyses in the main paper. Figure 16
shows the link between choice set features and errors / cognitive uncertainty in the full
sample of 2,220 problems.
With menus larger than two, calculating excess dissimilarity is less trivial. We pro-

ceed by calculating for each pair of options in the set, and then average across all pairs.
Similarly, for the lottery-specific features such as payout scale, we average across all
lotteries in the set.
Figure 16 shows that menu size has a large effect on both errors and CU, though the

effect is still somewhat smaller than that of excess dissimilarity.

49



0
.1

.2
.3

.4
.5

C
or

re
la

tio
n 

co
ef

f. 
an

d 
95

%
 C

I

Log excess
dissimilarity

Menu
size

Log payout
scale

Mixed / loss
payouts

Log number
of states

Compound
probabilities

-Log abs. EV
difference

Raw correlations Partial correlations

EV Task: Error rates and choice set features

0
.1

.2
.3

.4
.5

C
or

re
la

tio
n 

co
ef

f. 
an

d 
95

%
 C

I

Log excess
dissimilarity

Menu
size

Log payout
scale

Mixed / loss
payouts

Log number
of states

Compound
probabilities

-Log abs. EV
difference

Raw correlations Partial correlations

EV Task: Cognitive uncertainty and choice set features

Figure 16: Correlations between choice set features and errors / cognitive uncertainty in the full dataset
in the EV Task, including menus with more than two options in the train set. Raw and partial correla-
tion coefficients between task-level error rates / average cognitive uncertainty and choice set features.
Whiskers show 95% confidence intervals. Excess dissimilarity and proximity of expected values are com-
puted for each pair in the set and then averaged across pairs. Log scale, mixed / loss payouts, log number
of states and compound probabilities are computed separately for each lottery and then averaged across
the lotteries in a choice set.

G Targeted Problems in EV Tasks

The 120 “targeted” EV Tasks problems that we manually devised fall into two categories.
In a first category of 96 problems, one option is a safe payment and the other one a non-
degenerate lottery. Here, we designed three “sets,” each of which is defined by a base
lottery. Across choice problems within each set, we manipulate specific features of the
base lottery: scale (average absolute payout), variance, the presence of mixed gain-loss
payouts, number of states, extremity of probabilities (distance to certainty), and the
presence of compound probabilities. In designing these manipulations, we were careful
to hold other aspects of the lotteries constant to the greatest degree possible.
In a second category of 24 problems, both options in a choice set consisted of non-

degenerate lotteries. Here, we manipulated the similarity of the CDFs of the two options
while holding features such as expected value and variance constant.
Table 12 summarizes the results, which are broadly consistent with those from the
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Table 12: Results for targeted EV tasks

Dependent variable:
1 if error Cognitive uncertainty

(1) (2) (3) (4)

Higher variance / payout range 0.095∗∗∗ 0.028∗∗∗
(0.02) (0.01)

Higher average abs. payout 0.033 -0.0076
(0.02) (0.01)

Mixed lottery (constant range) 0.033 0.021∗
(0.04) (0.01)

Mixed lottery (larger range) 0.18∗∗∗ 0.038∗∗∗
(0.02) (0.01)

Higher number of states 0.069 0.034∗∗∗
(0.04) (0.01)

Lower distance to certainty -0.0088 -0.024∗
(0.03) (0.01)

Compound lottery 0.11∗∗∗ 0.074∗∗∗
(0.03) (0.01)

Higher distance between CDFs 0.18∗∗∗ 0.020∗∗∗
(0.04) (0.01)

Controls for EV diff. Yes Yes Yes Yes

Problem set FE Yes Yes Yes Yes

Observations 8087 2003 8087 2003
R2 0.02 0.06 0.03 0.02

Notes.OLS regressions, standard errors (twoway-clustered at subject and prob-
lem level) in parentheses. An observation is a decision. Each independent vari-
able is a binary dummy for a problem type. The omitted category comprises
the base problems. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

full set of (randomly-generated) problems reported in Figure 1. The main difference
is that in the targeted problems we find little indication that the magnitude of payouts
itself affects errors.
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H Experimental Instructions and Comprehension Checks

H.1 Experiment EV Tasks
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H.2 Experiment Choice Tasks
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H.3 Experiment Within Subject

The order of the two tasks in ourWithin Subject experiment was randomized. The exper-
iment was structured so that participants first saw a set of general instructions, followed
by the instructions for the first task. After completing the first task along with compre-
hension checks, participants then saw instructions for the second task and associated
comprehension checks. The task instructions are virtually independent of order, except
that two of the comprehension questions apply to both tasks, and so are only asked for
the first. The instructions below have Choice tasks first.
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